Acta Laser Biology Sinica, Volume. 30, Issue 3, 223(2021)

Genome-wide Identification and Tissue-specific Expression Analysis of MADS-box Gene Family in Ipomoea trifida

YAO Xufeng1, DONG Jingjing2, LIU Shifang1, ZHANG Yi1, TANG Ruimin1, WANG Wenbin1, XIE Honge3, WU Yuhao3, WU Zongxin3, HE Liheng2, LI Runzhi2, and JIA Xiaoyun1、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(32)

    [1] [1] THEISSEN G, BECKER A, ROSA A D, et al. A short history of MADS-box genes in plants[J]. Plant Molecular Biology, 2000, 42(1): 115-149.

    [2] [2] MESSENGUY F, DUBOIS E. Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development[J]. Gene, 2003, 316(2): 1-21.

    [3] [3] HENSCHEL K, KOFUJI R, HASEBE M, et al. Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens[J]. Molecular Biology and Evolution, 2002, 19(6): 801-814.

    [4] [4] KAUFMANN K, MELZER R, THEISSEN G. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants[J]. Gene, 2005, 347(2): 183-198.

    [5] [5] KRIZEK B A, MEYEROWITZ E M. Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ-identity proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(9): 4063-4070.

    [6] [6] IMMINK R G, GADELLA T W, FERRARIO S, et al. Analysis of MADS box protein-protein interactions in living plant cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(4): 2416-2421.

    [8] [8] DAY R C, HERRIDGE R P, AMBROSE B A, et al. Transcriptome analysis of proliferating Arabidopsis endosperm reveals biological implications for the control of syncytial division, cytokinin signaling, and gene expression regulation[J]. Plant Physiology, 2008, 148(4): 1964-1984.

    [9] [9] TIWARI S, SPIELMAN M, SCHULZ R, et al. Transcriptional profiles underlying parent-of-origin effects in seeds of Arabidopsis thaliana[J]. BMC Plant Biology, 2010, 10: 72.

    [10] [10] WUEST S E, VIJVERBERG K, SCHMIDT A, et al. Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes[J]. Current Biology, 2010, 20(6): 506-512.

    [11] [11] KOTODA N, WADA M, KUSABA S, et al. Overexpression of MdMADS5, an APETALA1-like gene of apple, causes early flowering in transgenic Arabidopsis[J]. Plant Science, 2002, 162(5): 679-687.

    [12] [12] KITAHARA K, HIBINO Y, AIDA R, et al. Ectopic expression of the rose AGAMOUS-like MADS-box genes ‘MASAKO C1 and D1’ causes similar homeotic transformation of sepal and petal in Arabidopsis and sepal in Torenia[J]. Plant Science, 2004, 166(5): 1245-1252.

    [13] [13] MA P Y, BIAN X F, JIA Z D, et al. De novo sequencing and comprehensive analysis of the mutant transcriptome from purple sweet potato (Ipomoea batatas L.)[J]. Gene, 2016, 575(2 Part 3): 641-649.

    [14] [14] HIRAKAWA H, OKADA Y, TABUCHI H, et al. Survey of genome sequences in a wild sweet potato, Ipomoea trifida (H. B. K.) G. Don[J]. DNA Research, 2015, 22(2): 171-179.

    [15] [15] HUANG J C, SUN M. Genetic diversity and relation-ships of sweetpotato and its wild relatives in Ipomoea series Batatas (Convolvulaceae) as revealed by inter-simple sequence repeat (ISSR) and restriction analysis of chloro-plast DNA[J]. Theoretical and Applied Genetics, 2000, 100(7): 1050-1060.

    [16] [16] HU J J, NAKATANI M, LALUSIN A G, et al. Genetic analysis of sweetpotato and wild relatives using inter-simple sequence repeats (ISSRs)[J]. Breeding Science, 2003, 53: 297-304.

    [17] [17] HU J J, NAKATANI M, LALUSIN A G, et al. New miscrosatellite markers developed from reported Ipomoea trifida sequences and their application to sweetpotato and its related wild species[J]. Scientia Horticulturae, 2004, 102(4): 375-386.

    [18] [18] PARENICOVá L, DE FOLTERS S, KIEFFER M, et al. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world[J]. The Plant Cell, 2003, 15(7): 1538-1551.

    [19] [19] GIMENEZ E, CASTA?EDA L, PINEDA B, et al. TOMATO AGAMOUS1 and ARLEQUIN/TOMATO AGAMOUS-LIKE1 MADS-box genes have redundant and divergent functions required for tomato reproductive development[J]. Plant Molecular Biology, 2016, 91: 513-531.

    [21] [21] CHEN C, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202.

    [22] [22] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–△△CT method[J]. Methods, 2001, 25(4): 402-408.

    [24] [24] RIECHMANN J L, MEYEROWITZ E M. MADS domain proteins in plant development[J]. Biological Chemistry, 1997, 378(10): 1079-1101.

    [25] [25] SHAN H, ZAHN L, GUINDON S, et al. Evolution of plant MADS box transcription factors: evidence for shifts in selection associated with early angiosperm diversification and concerted gene duplications[J]. Molecular Biology and Evolution, 2009, 26(10): 2229-2244.

    [26] [26] OU L, LI D, LV J, et al. Pan-genome of cultivated pepper (Capsicum) and its use in gene presence-absence variation analyses[J]. The New Phytologist, 2018, 220(2): 360-363.

    [27] [27] ALVAREZ-BUYLLA E R, LILJEGREN S J, PELAZ S, et al. MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes[J]. The Plant Journal, 2000, 24(4): 457-466.

    [28] [28] KHONG G N, PATI P K, RICHAUD F, et al. OsMADS26 negatively regulates resistance to pathogens and drought tolerance in rice[J]. Plant Physiology, 2015, 169(4): 2935-2949.

    [29] [29] CHEN Y, ZHU P P, WU S Y, et al. Identification and expression analysis of GRAS transcription factors in the wild relative of sweet potato Ipomoea trifida[J]. BMC Genomics, 2019, 20(1): 911.

    [32] [32] WEI X, WANG L H, YU J Y, et al. Genome-wide identification and analysis of the MADS-box gene family in sesame[J]. Gene, 2015, 569(1): 66-76.

    [33] [33] TIAN Y, DONG Q, JI Z, et al. Genome-wide identification and analysis of the MADS-box gene family in apple[J]. Gene, 2015, 555(2): 277-290.

    [35] [35] NAM J, DEPAMPHILIS C W, MA H, et al. Antiquity and evolution of the MADS-box gene family controlling flower development in plants[J]. Molecular Biology and Evolution, 2003, 20(9): 1435-1447.

    [36] [36] AIROLDI C A, DAVIES B. Gene duplication and the evolution of plant MADS-box transcription factors[J]. Journal of Genetics and Genomics, 2012, 39(4): 157-165.

    [37] [37] PORTEREIKO M F, LLOYD A, STEFFEN J G, et al. AGL80 is required for central cell and endosperm development in Arabidopsis[J]. The Plant Cell, 2006, 18(8): 1862-1872.

    [38] [38] ZHU Y Y, LI Y Q, XIN D D, et al. RNA-Seq-based transcriptome analysis of dormant flower buds of Chinese cherry (Prunus pseudocerasus)[J]. Gene, 2015, 555(2): 362-376.

    Tools

    Get Citation

    Copy Citation Text

    YAO Xufeng, DONG Jingjing, LIU Shifang, ZHANG Yi, TANG Ruimin, WANG Wenbin, XIE Honge, WU Yuhao, WU Zongxin, HE Liheng, LI Runzhi, JIA Xiaoyun. Genome-wide Identification and Tissue-specific Expression Analysis of MADS-box Gene Family in Ipomoea trifida[J]. Acta Laser Biology Sinica, 2021, 30(3): 223

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 1, 2020

    Accepted: --

    Published Online: Sep. 1, 2021

    The Author Email: Xiaoyun JIA (sxndjxy@126.com)

    DOI:10.3969/j.issn.1007-7146.2021.03.005

    Topics