Chinese Journal of Liquid Crystals and Displays, Volume. 36, Issue 5, 751(2021)
Improved multi-scale flame detection method
[17] [17] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[18] [18] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016: 770-778.
[19] [19] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
[20] [20] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[21] [21] CHUANG T Y, HAN J Y, JHAN D J, et al. Geometric recognition of moving objects in monocular rotating imagery using faster R-CNN[J]. Remote Sensing, 2020, 12(12): 1908.
[22] [22] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[J]. arXiv: 1608.06993, 2016.
[23] [23] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv: 1804.02767, 2018.
Get Citation
Copy Citation Text
HOU Yi-cheng, WANG Hui-qin, WANG Ke. Improved multi-scale flame detection method[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(5): 751
Category:
Received: Aug. 31, 2020
Accepted: --
Published Online: Aug. 26, 2021
The Author Email: WANG Hui-qin (hqwang@xauat.edu.cn)