High Power Laser and Particle Beams, Volume. 34, Issue 3, 031011(2022)
Precise laser pulse shaping technology and application with high energy stability
[1] Zhang F, Cai H B, Zhou W M, et al. Enhanced energy coupling for indirect-drive fast-ignition fusion targets[J]. Nature Physics, 16, 810-814(2020).
[2] Gopalaswamy V, Betti R, Knauer J P, et al. Tripled yield in direct-drive laser fusion through statistical modelling[J]. Nature, 565, 581-586(2019).
[3] Jing Longfei, Jiang Shaoen, Kuang Longyu, et al. Comparison of three hohlraum configurations with six laser entrance holes for indirect-drive inertial confinement fusion[J]. Nuclear Fusion, 58, 096017(2018).
[4] Betti R, Hurricane O A. Inertial-confinement fusion with lasers[J]. Nature Physics, 12, 435-448(2016).
[6] Zheng Wanguo, Wei Xiaofeng, Zhu Qihua, et al. Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility[J]. Matter and Radiation at Extremes, 2, 243-255(2017).
[7] Spaeth M L, Manes K R, Kalantar D H, et al. Description of the NIF Laser[J]. Fusion Science and Technology, 69, 25-145(2016).
[9] Fan Wei, Jiang Youen, Wang Jiangfeng, et al. Progress of the injection laser system of SG-II[J]. High Power Laser Science and Engineering, 6, e34(2018).
[10] Li Ping, Wang Wei, Jin Sai, et al. The shaped pulses control and operation on the SG-III prototype facility[J]. Laser Physics, 28, 045004(2018).
[12] Guardalben M J, Barczys M, Kruschwitz B E, et al. Laser-system model for enhanced operational performance and flexibility on OMEGA EP[J]. High Power Laser Science and Engineering, 8, e8(2020).
[13] [13] Shaw M, House R. Laser perfmance operations model (LPOM): the computational system that automates the setup perfmance analysis of the National Ignition Facility[C]Proceedings of SPIE 9345 High Power Lasers f Fusion Research III. 2015: 93450E.
[14] Brunton G, Erbert G, Browning D, et al. The shaping of a national ignition campaign pulsed waveform[J]. Fusion Engineering and Design, 87, 1940-1944(2012).
[15] [15] Zhao Junpu, Liang Yue, Li Sen, et al. Beam nonunifmity compensating by the programmable spatial shaper f the integration test bed[C]Proceedings of the SPIE 11052 Third International Conference on Photonics Optical Engineering. 2019: 110521R.
[16] [16] Zhao Junpu, Wang Wenyi, Fu Xuejun, et al. Recent progress of the Integration Test Bed[C]Proceedings of the SPIE 9266 HighPower Lasers Applications VII. 2014: 92660X.
[17] Yao Ke, Gao Song, Tang Jun, et al. Off-axis eight-pass neodymium glass laser amplifier with high efficiency and excellent energy stability[J]. Applied Optics, 57, 8727-8732(2018).
[18] Yao Ke, Xie Xudong, Tang Jun, et al. Diode-side-pumped joule-level square-rod Nd: glass amplifier with 1 Hz repetition rate and ultrahigh gain[J]. Optics Express, 27, 32912-32923(2019).
[19] Zhang Rui, Tian Xiaocheng, Zhou Dandan, et al. Single-mode millijoule fiber laser system with high pulse shaping ability[J]. Optik, 157, 1087-1093(2018).
[20] Xu Dangpeng, Tian Xiaocheng, Zhou Dandan, et al. Temporal pulse precisely sculpted millijoule-level fiber laser injection system for high-power laser driver[J]. Applied Optics, 56, 2661-2666(2017).
Get Citation
Copy Citation Text
Zhaoyu Zong, Junpu Zhao, Sen Li, Yue Liang, Ke Yao, Xiaocheng Tian, Xiaoxia Huang, Bo Chen, Wanguo Zheng. Precise laser pulse shaping technology and application with high energy stability[J]. High Power Laser and Particle Beams, 2022, 34(3): 031011
Category: Laser Propagation and Control
Received: Jul. 14, 2021
Accepted: --
Published Online: Mar. 28, 2022
The Author Email: Wanguo Zheng (wgzheng_caep@sina.com)