Optics and Precision Engineering, Volume. 33, Issue 10, 1534(2025)
Monitoring of blood temperature and acoustic impedance based on forward stimulated brillouin scattering in aluminum coated optical fibers
[1] RORIZ P, SILVA S, FRAZÃO O et al. Optical fiber temperature sensors and their biomedical applications[J]. Sensors, 20, 2113(2020).
[2] GUPTA B D, PATHAK A, SHRIVASTAV A M. Optical biomedical diagnostics using lab-on-fiber technology: a review[J]. Photonics, 9, 86(2022).
[3] YANG X D, HOU S L, XIE C J et al. High-performance photonic crystal fiber biosensor based on surface plasmon resonance for early cancer detection[J]. Plasmonics, 19, 675-685(2024).
[4] SÁNCHEZ L A, DÍEZ A, CRUZ J L et al. Recent advances in forward Brillouin scattering: sensor applications[J]. Sensors, 23, 318(2022).
[5] SÁNCHEZ L A, DÍEZ A, CRUZ J L et al. Strain and temperature measurement discrimination with forward Brillouin scattering in optical fibers[J]. Optics Express, 30, 14384-14392(2022).
[6] HOU S L, XUE L M, WANG J W et al. Temperature and stress response of depolarized guided acoustic Brillouin scattering in photonic crystal fibers[J]. Chinese Journal of Luminescence, 34, 500(2013).
侯尚林, 薛乐梅, 王菊巍. 光子晶体光纤中去极化声波导布里渊散射温度及应变响应[J]. 发光学报, 34, 500(2013).
[7] ZADOK A, DIAMANDI H H, LONDON Y et al. Forward Brillouin Scattering in Standard Optical Fibers[M]. Springer Series in Optical Sciences(2022).
[8] 侯尚林, 薛乐梅, 黎锁平. 光子晶体光纤中布里渊散射声波模式特性的分析[J]. 物理学报, 61, 188-192(2012).
HOU S L, XUE L M, LI S P et al. Study on characteristics of acoustic modes
[9] 李天夫, 巴德欣, 周登望. 前向受激布里渊散射光纤传感研究进展[J]. 光电工程, 49, 220021(2022).
LI T F, BA D X, ZHOU D W et al. Recent progress in optical fiber sensing based on forward stimulated Brillouin scattering[J]. Opto-Electronic Engineering, 49, 220021(2022).
[10] FENG Y L, HOU S L et al. Analysis on acoustic modes and Brillouin gain spectra of backward stimulated Brillouin scattering in W-type acoustic waveguide optical fibers[J]. Optics Express, 32, 36434-36452(2024).
[11] ZHENG Z, LI Z Y, FU X L et al. Multipoint acoustic impedance sensing based on frequency-division multiplexed forward stimulated Brillouin scattering[J]. Optics Letters, 45, 4523-4526(2020).
[12] ZHANG Z L, LU Y G, PENG J Q et al. Simultaneous measurement of temperature and acoustic impedance based on forward Brillouin scattering in LEAF[J]. Optics Letters, 46, 1776-1779(2021).
[13] DONG Y K, REN Y L, LI H W et al. Quasi-acoustic impedance matching distributed opto-mechanical sensor with aluminized coating optical fibers[J]. Optics Letters, 47, 5696-5699(2022).
[14] CHERIAN V T. Physiological Functions of Blood[M]. Blood Substitutes and Oxygen Biotherapeutics, 33-43(2022).
[15] SHAH A, SRIVASTAVA S, CHATURVEDI C P. Biomolecular Components of Blood and Their Role in Health and Diseases[M]. Clinical Applications of Biomolecules in Disease Diagnosis, 289-322(2024).
[16] CARSTENSEN E L. The acoustic impedance of human blood[J]. The Journal of the Acoustical Society of America, 23, 627(1951).
[17] BERNAL-ALVARADO J, ALVAREZ‐GONZÁLEZ R R, PALOMARES P. Electrical Characterization of Human Blood as A Function of Temperature[C], 724, 226-229(2004).
[18] DIAMANDI H H, LONDON Y, BASHAN G et al. Distributed opto-mechanical analysis of liquids outside standard fibers coated with polyimide[J]. APL Photonics, 4(2019).
[19] DIAMANDI H H, LONDON Y, BASHAN G et al. Forward stimulated Brillouin scattering analysis of optical fibers coatings[J]. Journal of Lightwave Technology, 39, 1800-1807(2021).
[20] BIRYUKOV A S, SUKHAREV M E, DIANOV E M. Excitation of sound waves upon propagation of laser pulses in optical fibres[J]. Quantum Electronics, 32, 765-775(2002).
[21] OTTEN W, KAPRON F, OLSON T. Mode-field diameter of single-mode fiber by knife-edge scanning in the far field[J]. Journal of Lightwave Technology, 4, 1576-1579(1986).
[22] CHOW D M, THÉVENAZ L. Forward Brillouin scattering acoustic impedance sensor using thin polyimide-coated fiber[J]. Optics Letters, 43, 5467-5470(2018).
[23] ZHANG L, WANG H, LI Y et al. Towards high-sensitivity and high-accuracy forward Brillouin scattering-based optomechanical temperature sensing in thin-diameter fibers[J]. Opt Express, 32, 586-598(2024).
[24] LEDBETTER H. Sound velocities, elastic constants: Temperature dependence[J]. Materials Science and Engineering: A, 442, 31-34(2006).
[25] VARSHNI Y P. Temperature dependence of the elastic constants[J]. Physical Review B, 2, 3952-3958(1970).
[26] REECE W O. The composition and functions of blood[J]. Duckes’ Physiology of Domestic Animals 13th Edition, 114-136(2015).
[27] SCHNEDITZ D, HEIMEL H, STABINGER H. Sound speed, density and total protein concentration of blood[J]. Journal of Clinical Chemistry and Clinical Biochemistry Zeitschrift Fur Klinische Chemie und Klinische Biochemie, 27, 803-806(1989).
[28] STEIN P D, SABBAH H N. Accentuation of heart sounds in anemia: an effect of blood viscosity[J]. The American Journal of Physiology, 235, H664-H669(1978).
[29] JONES M P. Avian clinical pathology[J]. Veterinary Clinics of North America: Exotic Animal Practice, 2, 663-687(1999).
[30] SCHNEDITZ D, MOSER M, SMOLLE-JÜTTNER F M et al. Methods in clinical hemorheology: the continuous measurement of arterial blood density and blood sound speed in man[J]. Biorheology, 27, 895-902(1990).
[31] LUDWIG G D. The velocity of sound through tissues and the acoustic impedance of tissues[J]. The Journal of the Acoustical Society of America, 22, 862-866(1950).
[32] ZHANG W J, LU Y G, HE C J. Simultaneous measurement of temperature, refractive index, and axial strain based on forward Brillouin scattering in polyimide-coated SMF[J]. IEEE Sensors Journal, 23, 27361-27368(2023).
[33] LIANG L L, ZHANG Z L, ZHANG W J et al. Temperature and acoustic impedance simultaneous sensing based on FBS in coated optical fiber[J]. IEEE Photonics Technology Letters, 35, 1151-1154(2023).
Get Citation
Copy Citation Text
Shanglin HOU, Hang SHAN, jie DONG, Gang WU, Zuyong YAN. Monitoring of blood temperature and acoustic impedance based on forward stimulated brillouin scattering in aluminum coated optical fibers[J]. Optics and Precision Engineering, 2025, 33(10): 1534
Category:
Received: Feb. 21, 2025
Accepted: --
Published Online: Jul. 23, 2025
The Author Email: Shanglin HOU (houshanglin@vip.163.com)