Acta Optica Sinica, Volume. 44, Issue 4, 0400004(2024)

All-Optical Inverse Compton Scattering

Jianmeng Wei1,2, Changquan Xia3、*, Ke Feng2, Hong Zhang2, Hai Jiang2, Yanjie Ge2, Wentao Wang2、**, Yuxin Leng2、***, and Ruxin Li2,4
Author Affiliations
  • 1School of Physics Sciences, University of Science and Technology of China, Hefei 230026, Anhui , China
  • 2State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 3School of Physical Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu , China
  • 4School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
  • show less
    References(62)

    [1] Compton A H. A quantum theory of the scattering of X-rays by light elements[J]. Physical Review, 21, 483-502(1923).

    [2] Feenberg E, Primakoff H. Interaction of cosmic-ray primaries with sunlight and starlight[J]. Physical Review, 73, 449-469(1948).

    [3] Milburn R H. Electron scattering by an intense polarized photon field[J]. Physical Review Letters, 10, 75-77(1963).

    [4] Arutyunian F R, Tumanian V A. The Compton effect on relativistic electrons and the possibility of obtaining high energy beams[J]. Physics Letters, 4, 176-178(1963).

    [5] Chaleil A, Le Flanchec V, Binet A et al. Inverse Compton scattering X-ray source yield optimization with a laser path folding system inserted in a pre-existent RF linac[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 840, 113-120(2016).

    [6] Akagi T, Kosuge A, Araki S et al. Narrow-band photon beam via laser Compton scattering in an energy recovery linac[J]. Physical Review Accelerators and Beams, 19, 114701(2016).

    [7] Shimizu H, Akemoto M, Arai Y et al. X-ray generation by inverse Compton scattering at the superconducting RF test facility[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 772, 26-33(2015).

    [8] Du Y C, Yan L X, Hua J F et al. Generation of first hard X-ray pulse at Tsinghua Thomson Scattering X-ray Source[J]. The Review of Scientific Instruments, 84, 053301(2013).

    [9] Howell C R, Ahmed M W, Afanasev A et al. International workshop on next generation gamma-ray source[J]. Journal of Physics G: Nuclear and Particle Physics, 49, 010502(2022).

    [10] Mangles S P D, Murphy C D, Najmudin Z et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions[J]. Nature, 431, 535-538(2004).

    [11] Faure J, Glinec Y, Pukhov A et al. A laser-plasma accelerator producing monoenergetic electron beams[J]. Nature, 431, 541-544(2004).

    [12] Geddes C G R, Toth C, van Tilborg J et al. High-quality electron beams from a laser Wakefield accelerator using plasma-channel guiding[J]. Nature, 431, 538-541(2004).

    [13] Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Reviews of Modern Physics, 81, 1229-1285(2009).

    [14] Bula C, McDonald K T, Prebys E J et al. Observation of nonlinear effects in Compton scattering[J]. Physical Review Letters, 76, 3116-3119(1996).

    [15] Bamber C, Boege S J, Koffas T et al. Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses[J]. Physical Review D, 60, 092004(1999).

    [16] Sakai Y, Pogorelsky I, Williams O et al. Observation of redshifting and harmonic radiation in inverse Compton scattering[J]. Physical Review Special Topics‑Accelerators and Beams, 18, 060702(2015).

    [17] Ride S K, Esarey E, Baine M. Thomson scattering of intense lasers from electron beams at arbitrary interaction angles[J]. Physical Review E, 52, 5425-5442(1995).

    [18] Leemans W P, Gonsalves A J, Mao H S et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime[J]. Physical Review Letters, 113, 245002(2014).

    [19] Qin Z Y, Yu C H, Wang W T et al. Ultralow-emittance measurement of high-quality electron beams from a laser Wakefield accelerator[J]. Physics of Plasmas, 25, 023106(2018).

    [20] Wang W T, Li W T, Liu J S et al. High-brightness high-energy electron beams from a laser Wakefield accelerator via energy chirp control[J]. Physical Review Letters, 117, 124801(2016).

    [21] Alejo A, Samarin G M, Warwick J R et al. Laser-wakefield electron beams as drivers of high-quality positron beams and inverse-compton-scattered photon beams[J]. Frontiers in Physics, 7, 49(2019).

    [22] Phuoc K T, Corde S, Thaury C et al. All-optical Compton gamma-ray source[J]. Nature Photonics, 6, 308-311(2012).

    [23] Sarri G, Corvan D J, Schumaker W et al. Ultrahigh brilliance multi-MeV γ‑ray beams from nonlinear relativistic Thomson scattering[J]. Physical Review Letters, 113, 224801(2014).

    [24] Yu C H, Qi R, Wang W T et al. Ultrahigh brilliance quasi-monochromatic MeV γ-rays based on self-synchronized all-optical Compton scattering[J]. Scientific Reports, 6, 29518(2016).

    [25] Shou Y R, Wang P J, Lee S G et al. Brilliant femtosecond-laser-driven hard X-ray flashes from carbon nanotube plasma[J]. Nature Photonics, 17, 137-142(2023).

    [26] Liu C, Golovin G, Chen S Y et al. Generation of 9  MeV γ‑rays by all-laser-driven Compton scattering with second-harmonic laser light[J]. Optics Letters, 39, 4132-4135(2014).

    [27] Yan W C, Fruhling C, Golovin G et al. High-order multiphoton Thomson scattering[J]. Nature Photonics, 11, 514-520(2017).

    [28] Cole J M, Behm K T, Gerstmayr E et al. Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam[J]. Physical Review X, 8, 011020(2018).

    [29] Powers N D, Ghebregziabher I, Golovin G et al. Quasi-monoenergetic and tunable X-rays from a laser-driven Compton light source[J]. Nature Photonics, 8, 28-31(2014).

    [30] Khrennikov K, Wenz J, Buck A et al. Tunable all-optical quasimonochromatic Thomson X-ray source in the nonlinear regime[J]. Physical Review Letters, 114, 195003(2015).

    [31] Lemos N, King P, Shaw J L et al. X-ray sources using a picosecond laser driven plasma accelerator[J]. Physics of Plasmas, 26, 083110(2019).

    [32] Ma Y, Hua J F, Liu D X et al. Compact polarized X-ray source based on all-optical inverse Compton scattering[J]. Physical Review Applied, 19, 014073(2023).

    [33] Gonsalves A J, Nakamura K, Daniels J et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide[J]. Physical Review Letters, 122, 084801(2019).

    [34] Ranjan N, Terzić B, Krafft G A et al. Simulation of inverse Compton scattering and its implications on the scattered linewidth[J]. Physical Review Accelerators and Beams, 21, 030701(2018).

    [35] Tan F, Zhu B, Zhao Z Q et al. Numerical simulation of full-optical Thomson scattering X-ray source[J]. High Power Laser and Particle Beams, 23, 1233-1238(2011).

    [36] Li J X, Hatsagortsyan K Z, Galow B J et al. Attosecond gamma-ray pulses via nonlinear Compton scattering in the radiation-dominated regime[J]. Physical Review Letters, 115, 204801(2015).

    [37] Liu J S, Xia C Q, Wang W T et al. All-optical cascaded laser Wakefield accelerator using ionization-induced injection[J]. Physical Review Letters, 107, 035001(2011).

    [38] Kim H T, Pae K H, Cha H J et al. Enhancement of electron energy to the multi-GeV regime by a dual-stage laser-wakefield accelerator pumped by petawatt laser pulses[J]. Physical Review Letters, 111, 165002(2013).

    [39] Ye H S, Gu Y Q, Fan Q P et al. Enhanced Thomson scattering X-ray sources with flying focus laser pulse[J]. AIP Advances, 13, 035330(2023).

    [40] Geng X S, Ji L L, Shen B F. Quasimonochromatic bright gamma-ray generation from synchronized Compton scattering via azimuthal spatial-temporal coupling[J]. Physical Review Applied, 17, 024055(2022).

    [41] Ye H S, Gu Y Q, Huang W H et al. Parameter optimization of self-reflecting all-laser-driven Thomson scattering based on laser Wakefield acceleration[J]. Acta Physica Sinica, 70, 085204(2021).

    [42] Chen S, Powers N D, Ghebregziabher I et al. MeV-energy X rays from inverse Compton scattering with laser-wakefield accelerated electrons[J]. Physical Review Letters, 110, 155003(2013).

    [43] Zhu C Q, Wang J G, Feng J et al. Inverse Compton scattering X-ray source from laser electron accelerator in pure nitrogen with 15 TW laser pulses[J]. Plasma Physics and Controlled Fusion, 61, 024001(2019).

    [44] Wu Y, Yu C H, Qin Z Y et al. Dual-color γ-rays via all-optical Compton scattering from a cascaded laser-driven Wakefield accelerator[J]. Plasma Physics and Controlled Fusion, 61, 085030(2019).

    [45] Ma Y, Hua J F, Liu D X et al. Region-of-interest micro-focus computed tomography based on an all-optical inverse Compton scattering source[J]. Matter and Radiation at Extremes, 5, 064401(2020).

    [46] Gu Y J, Klimo O, Bulanov S V et al. Brilliant gamma-ray beam and electron-positron pair production by enhanced attosecond pulses[J]. Communications Physics, 1, 93(2018).

    [47] Maiuri M, Garavelli M, Cerullo G. Ultrafast spectroscopy: state of the art and open challenges[J]. Journal of the American Chemical Society, 142, 3-15(2020).

    [48] Glenzer S H, Fletcher L B, Galtier E et al. Matter under extreme conditions experiments at the Linac Coherent Light Source[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 49, 092001(2016).

    [49] Hagmann C A, Hall J M, Johnson M S et al. Transmission-based detection of nuclides with nuclear resonance fluorescence using a quasimonoenergetic photon source[J]. Journal of Applied Physics, 106, 084901(2009).

    [50] Weller H R, Ahmed M W, Gao H Y et al. Research opportunities at the upgraded HIγS facility[J]. Progress in Particle and Nuclear Physics, 62, 257-303(2009).

    [51] Chen Y Y, Li J X, Hatsagortsyan K Z et al. γ-ray beams with large orbital angular momentum via nonlinear Compton scattering with radiation reaction[J]. Physical Review Letters, 121, 074801(2018).

    [52] Wang Y, Ababekri M, Wan F et al. Brilliant circularly polarized γ-ray sources via single-shot laser plasma interaction[J]. Optics Letters, 47, 3355-3358(2022).

    [53] Omori T, Fukuda M, Hirose T et al. Efficient propagation of polarization from laser photons to positrons through Compton scattering and electron-positron pair creation[J]. Physical Review Letters, 96, 114801(2006).

    [54] Bragin S, Meuren S, Keitel C H et al. High-energy vacuum birefringence and dichroism in an ultrastrong laser field[J]. Physical Review Letters, 119, 250403(2017).

    [55] Glinec Y, Faure J, le Dain L et al. High-resolution γ-ray radiography produced by a laser-plasma driven electron source[J]. Physical Review Letters, 94, 025003(2005).

    [56] Albert F, Anderson S G, Anderson G A et al. Isotope-specific detection of low-density materials with laser-based monoenergetic gamma-rays[J]. Optics Letters, 35, 354-356(2010).

    [57] Achterhold K, Bech M, Schleede S et al. Monochromatic computed tomography with a compact laser-driven X-ray source[J]. Scientific Reports, 3, 1313(2013).

    [58] Dixit G, Slowik J M, Santra R. Proposed imaging of the ultrafast electronic motion in samples using X-ray phase contrast[J]. Physical Review Letters, 110, 137403(2013).

    [59] Cole J M, Symes D R, Lopes N C et al. High-resolution μCT of a mouse embryo using a compact laser-driven X-ray betatron source[J]. Proceedings of the National Academy of Sciences of the United States of America, 115, 6335-6340(2018).

    [60] du Plessis A, Yadroitsev I, Yadroitsava I et al. X-ray microcomputed tomography in additive manufacturing: a review of the current technology and applications[J]. 3D Printing and Additive Manufacturing, 5, 227-247(2018).

    [61] Kulpe S, Dierolf M, Braig E M et al. K-edge subtraction imaging for iodine and calcium separation at a compact synchrotron X-ray source[J]. Journal of Medical Imaging, 7, 023504(2020).

    [62] Kaliki S, Shields C L. Uveal melanoma: relatively rare but deadly cancer[J]. Eye, 31, 241-257(2017).

    Tools

    Get Citation

    Copy Citation Text

    Jianmeng Wei, Changquan Xia, Ke Feng, Hong Zhang, Hai Jiang, Yanjie Ge, Wentao Wang, Yuxin Leng, Ruxin Li. All-Optical Inverse Compton Scattering[J]. Acta Optica Sinica, 2024, 44(4): 0400004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Sep. 27, 2023

    Accepted: Nov. 22, 2023

    Published Online: Feb. 23, 2024

    The Author Email: Xia Changquan (xiachq@yzu.edu.cn), Wang Wentao (wwt1980@siom.ac.cn), Leng Yuxin (lengyuxin@siom.ac.cn)

    DOI:10.3788/AOS231602

    CSTR:32393.14.AOS231602

    Topics