Opto-Electronic Engineering, Volume. 50, Issue 11, 230155-1(2023)

Design technology of the truss support structure of the ultra-low thermal deformation gravitational wave detection telescope

Bohong Li1, Jian Luo1, Minyan Qiu1, Wenduo Chen2, and Hongchao Zhao3、*
Author Affiliations
  • 1MOE Key Laboratory of TianQin Mission, TianQin Research Center for Gravitational Physics & School of Physics and Astronomy, Frontiers Science Center for TianQin, Gravitational Wave Research Center of CNSA, Sun Yat-sen University (Zhuhai Campus), Zhuhai, Guangdong 519082, China
  • 2School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
  • 3School of Advanced Manufacturing, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
  • show less
    Figures & Tables(22)
    Single-layer CFRP schematic diagram. Direction 1 corresponds to the in-plane fiber direction referred to as the longitudinal direction;Direction 2 is perpendicular to direction 1 within the plane referred to as the transverse direction
    Laminate composite material schematic diagram
    Three-stage design of the TianQin telescope: 1) Main load-bearing plate; 2) Three main support rods; 3) Sub-mirror support adjustment backplate
    Replaceable telescope CFRP support tube joint
    Geometric model of the support structure
    Finite element simulation of thermal expansion of CFRP material — taking laying method 6 as an example
    Main support structure model and coordinate system
    Solid model (left); truss structure model (middle); theoretical model (right)
    Solid simulation and truss simulation result — example of thermal deformation in the dz direction
    Optimization results for structural thermal deformations
    First mode: oscillation along the Y direction, 122.61 Hz
    Second mode: oscillation along the X direction, 128.47 Hz
    Element analysis of thermal deformation of truss support structure — example with layer 1
    Taking 50 μK temperature noise as an example
    The relative thermal deformation in the M1-M2 separation direction is 12 pm/Hz
    • Table 1. Candidate materials for truss support structure of telescope prototype

      View table
      View in Article

      Table 1. Candidate materials for truss support structure of telescope prototype

      材料密度/(kg/m3)工程常数线胀系数/(10−6/K)
      钛合金ρ=4430E=114 GPa,ν=0.34α=8.8
      碳化硅ρ=3210E=466 GPa,ν=0.21α=2.4
      Zerodurρ=2530E=91 GPa,ν=0.24α=0.05
      常规Invar合金ρ=8110E=148 GPa,ν=0.30α=4.30
      定制Invar合金ρ=8150E=144 GPa,ν=0.30α=0.63
      CFRP1* M40J(3k)/wp-s3000单层板[21]ρ=1596E1=231 GPa,ν12=0.26 E2=7.76 GPaG12=4.3 GPaG23=2.8 GPa,α1=0.481α2=35.841
      CFRP2* T800H/M21单层板[22]ρ=1590E1=134.7 GPa,ν12=0.369 E2=7.70 GPaG12=4.2 GPaG23=2.5 GPaα1=0.31α2=31.8
    • Table 2. Alternative CFRP layup methods

      View table
      View in Article

      Table 2. Alternative CFRP layup methods

      序号铺层方式αxCFRP/(107/K)αyCFRP/(107/K)
      1[±45/0/90/0/90/45/45/90/0]s9.8179.817
      2[±45/90/0/45/0/45/0/90/0]s3.55518.90
      3[±45/60/0/45/90/45/0/60/0]s5.51814.99
      4[37.08/59.45/31.38/57.01/16.64/16.64/57.01/31.38/59.45/37.08]s1.20520.87
      5[32.61/53.67/37.04/56.86/32.65/32.65/56.86/37.04/53.67/32.61]s0.82620.28
      6[30.49/51.63/36.10/60.38/30.44/30.44/60.38/36.10/51.63/30.49]s0.06921.69
    • Table 3. Comparison of theoretical model calculation results with simulation results

      View table
      View in Article

      Table 3. Comparison of theoretical model calculation results with simulation results

      铺层方案αxCFRP/(107/K) (理论结果)αxCFRP/(107/K) (仿真结果)相对误差/%
      19.8179.8170
      25.5185.5180
      36.7136.7130
      41.2051.1990.42
      50.8260.8210.63
      60.0690.0656.10
    • Table 4. Design requirements for main support structure of telescope prototype

      View table
      View in Article

      Table 4. Design requirements for main support structure of telescope prototype

      指标项目输入条件性能要求
      1.结构重量固有性质<7.5kg(仅支架)
      2.模态特性固有性质freq1>80Hz
      3.重力卸载任意方向ΔzM1,2<10μmΔyM1,2<10μmΔTM1,2x<30μrad
      4.大尺度热变形周期内环境温变Δt=10KdzM1,2<10μm,dyM1,2<5μm
      5.热变形稳定性(极限)SΔt<10μK/Hz(10mHz0.1Hz)SΔlM1,2<1.0pm/Hz 对应αz<1×107/K
      6.热变形稳定性(常规)SΔt<50μK/Hz(10mHz0.1Hz)SΔlM1,2<0.4pm/Hz 对应αz<1×108/K
    • Table 5. Comparison and verification among the three models

      View table
      View in Article

      Table 5. Comparison and verification among the three models

      铺层序号理论模型/μm桁架模型/μm实体单元模型/μm
      间隔z8.2248.2248.646
      偏心y4.5564.5564.124
    • Table 6. Gravity unloading deformation analysis

      View table
      View in Article

      Table 6. Gravity unloading deformation analysis

      重力卸载方向设计要求分析结果
      沿Z方向卸载ΔzM1M2<10μmΔyM1M2<10μmΔTM1M2x<30μradΔzM1M2=0.38μmΔyM1M2=2.66μmΔTM1M2x=0.16μrad
      沿Y方向卸载ΔzM1M2<10μmΔyM1M2<10μmΔTM1M2x<30μradΔzM1M2=2.57μmΔyM1M2=5.47μmΔTM1M2x=2.31μrad
      沿X方向卸载ΔzM1M2<10μmΔyM1M2<10μmΔxM1M2<10μmΔTM1M2x<30μradΔzM1M2=0.02μmΔyM1M2=0.04μmΔxM1M2=5.91μmΔTM1M2x=0.03μrad
    • Table 7. Comparison results of structural thermal deformation between different materials

      View table
      View in Article

      Table 7. Comparison results of structural thermal deformation between different materials

      主支撑结构选材稳定性结果@10mHz0.1Hz/(pm/Hz)对应结构热膨胀系数αz/K
      CFRP支杆-铺层4-优化铺层方案12.03.31×107
      CFRP支杆-铺层1-各向同性铺层44.212.19×107
      SiC支杆104.328.77×107
      Invar-42支杆186.851.52×107
      钛合金支杆373.6103.05×107
    Tools

    Get Citation

    Copy Citation Text

    Bohong Li, Jian Luo, Minyan Qiu, Wenduo Chen, Hongchao Zhao. Design technology of the truss support structure of the ultra-low thermal deformation gravitational wave detection telescope[J]. Opto-Electronic Engineering, 2023, 50(11): 230155-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Jun. 29, 2023

    Accepted: Oct. 16, 2023

    Published Online: Mar. 26, 2024

    The Author Email: Hongchao Zhao (赵宏超)

    DOI:10.12086/oee.2023.230155

    Topics