Chinese Journal of Lasers, Volume. 50, Issue 18, 1813001(2023)

Lithium Niobate Crystals: From Holographic Storage to 3D Display

Dahuai Zheng1, Shuolin Wang1,2, Junkun Chen1, Yuqi Zhang1, Hongde Liu1, Mengxin Ren1、*, Yongfa Kong1、**, and Jingjun Xu1、***
Author Affiliations
  • 1School of Physics & TEDA Institute of Applied Physics, Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300457, China
  • 2College of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
  • show less
    References(75)

    [1] Kong Y F, Bo F, Wang W W et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices[J]. Advanced Materials, 32, 1806452(2020).

    [2] Zheng D H, Wu J, Shang J F et al. Progress on electro-optic crystals for Q-switches[J]. Scientia Sinica: Technologica, 47, 1139-1148(2017).

    [3] Gao B F, Ren M X, Zheng D H et al. Long-lived lithium niobate: history and progress[J]. Journal of Synthetic Crystals, 50, 1183-1199(2021).

    [4] Zheng D H, Zhang Y Q, Wang S L et al. Photorefractive effect of lithium niobate crystal[J]. Journal of Synthetic Crystals, 51, 1626-1642(2022).

    [5] Volk T, Wöhlecke M[M]. Lithium niobate: defects, photorefraction and ferroelectric switching(2009).

    [6] Chen F S. Optically induced change of refractive indices in LiNbO3 and LiTaO3[J]. Journal of Applied Physics, 40, 3389-3396(1969).

    [7] Amodei J J, Phillips W, Staebler D L. Improved electrooptic materials and fixing techniques for holographic recording[J]. Applied Optics, 11, 390-396(1972).

    [8] Phillips W, Amodei J J, Staebler D L. Optical and holographic storage properties of transition metal doped lithium niobate[J]. RCA Review, 33, 94-109(1972).

    [9] Buse K, Adibi A, Psaltis D. Non-volatile holographic storage in doubly doped lithium niobate crystals[J]. Nature, 393, 665-668(1998).

    [10] Zhang G Y, Li Q X, Ho P P et al. Dependence of specklon size on the laser beam size via photo-induced light scattering in LiNbO3:Fe[J]. Applied Optics, 25, 2955-2959(1986).

    [11] Zhang G, Liu S, Wu Z et al. Degenerate stimulated parametric scattering in LiNbO3∶Fe[J]. Journal of the Optical Society of America B, 4, 882-885(1987).

    [12] Liu S M, Xu J J, Zhang G Y et al. Light-climbing effect in LiNbO3:Fe crystal[J]. Applied Optics, 33, 997-999(1994).

    [13] Zheng D H, Wang W W, Wang S L et al. Real-time dynamic holographic display realized by bismuth and magnesium co-doped lithium niobate[J]. Applied Physics Letters, 114, 241903(2019).

    [14] Wang S L, Shan Y D, Zheng D H et al. The real-time dynamic holographic display of LN∶Bi,Mg crystals and defect-related electron mobility[J]. Opto-Electronic Advances, 5, 210135(2022).

    [15] Ashkin A, Boyd G D, Dziedzic J M et al. Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3[J]. Applied Physics Letters, 9, 72-74(1966).

    [16] Chen F S, La Macchia J T, Fraser D B. Holographic storage in lithium niobate[J]. Applied Physics Letters, 13, 223-225(1968).

    [17] Parthenopoulos D A, Rentzepis P M. Three-dimensional optical storage memory[J]. Science, 245, 843-845(1989).

    [18] Chen C P, Su Y K, Jhun C G. Recent advances in holographic recording media for dynamic holographic display[J]. Journal of Optics and Photonics, 1, 1-8(2014).

    [19] Lin S H, Hsieh M L, Hsu K Y et al. Photorefractive Fe:LiNbO3 crystal thin plates for optical information processing[J]. Journal of the Optical Society of America B, 16, 1112-1119(1999).

    [20] Moreno I, Davis J A, Hernandez T M et al. Complete polarization control of light from a liquid crystal spatial light modulator[J]. Optics Express, 20, 364-376(2011).

    [21] Rivas L M, Singh K, Carballar A et al. Arbitrary-order ultrabroadband all-optical differentiators based on fiber Bragg gratings[J]. IEEE Photonics Technology Letters, 19, 1209-1211(2007).

    [22] Gabor D. A new microscopic principle[J]. Nature, 161, 777-778(1948).

    [23] Leith E N, Upatnieks J. Wavefront reconstruction with continuous-tone objects[J]. Journal of the Optical Society of America, 53, 1377-1381(1963).

    [24] Tay S, Blanche P A, Voorakaranam R et al. An updatable holographic three-dimensional display[J]. Nature, 451, 694-698(2008).

    [25] Perry J W. Update on 3D displays[J]. Nature, 451, 636-637(2008).

    [26] Kong Y F, Xu J J, Zhang G Y et al[M]. Multifunctional photoelectric material: lithium niobate crystal, 179-180(2005).

    [27] McMillen D K, Hudson T D, Wagner J et al. Holographic recording in specially doped lithium niobate crystals[J]. Optics Express, 2, 491-502(1998).

    [28] Buse K, Jermann F, Krätzig E. Infrared holographic recording in LiNbO3∶Fe and LiNbO3∶Cu[M]. European materials research society symposia proceedings, 48, 237-240(1995).

    [29] Yang Y P, Adibi A, Berben D et al. The role of Mn in photorefractive LiNbO3[C], 101(2001).

    [30] Liu Y W, Liu L R, Xu L Y et al. Experimental study of non-volatile holographic storage in doubly-and triply-doped lithium niobate crystals[J]. Optics Communications, 181, 47-52(2000).

    [31] Adibi A, Buse K, Psaltis D. Two-center holographic recording[J]. Journal of the Optical Society of America B, 18, 584-601(2001).

    [32] Liu F C, Kong Y F, Ge X Y et al. Improved sensitivity of nonvolatile holographic storage in triply doped LiNbO3∶Zr,Cu,Ce[J]. Optics Express, 18, 6333-6339(2010).

    [33] Xu Z P, Xu C, Leng X S et al. Growth and nonvolatile holographic storage properties of Hf∶Ce∶Cu∶LiNbO3 crystals[J]. Journal of Crystal Growth, 318, 661-664(2011).

    [34] Zhang G Y, Xu J J, Liu S M et al. Study of resistance against photorefractive light-induced scattering in LiNbO3∶Fe,Mg crystals[J]. Proceedings of SPIE, 2529, 14-17(1995).

    [35] Zhang G Q, Tomita Y, Zhang X Z et al. Near-infrared holographic recording with quasi-nonvolatile readout in LiNbO3∶In,Fe[J]. Applied Physics Letters, 81, 1393-1395(2002).

    [36] Liu B, Li C L, Bi J C et al. Photorefractive features of non-stoichiometry codoped Hf∶Fe∶LiNbO3 single crystals[J]. Crystal Research and Technology, 43, 260-265(2008).

    [37] Kong Y F, Wu S Q, Liu S G et al. Fast photorefractive response and high sensitivity of Zr and Fe codoped LiNbO3 crystals[J]. Applied Physics Letters, 92, 251107(2008).

    [38] Orlowski R, Krätzig E. Holographic method for the determination of photo-induced electron and hole transport in electro-optic crystals[J]. Solid State Communications, 27, 1351-1354(1978).

    [39] Jungen R, Angelow G, Laeri F et al. Efficient ultraviolet photorefraction in LiNbO3[J]. Applied Physics A, 55, 101-103(1992).

    [40] Xu J J, Zhang G Y, Li F F et al. Enhancement of ultraviolet photorefraction in highly magnesium-doped lithium niobate crystals[J]. Optics Letters, 25, 129-131(2000).

    [41] Lamarque T, Nicolaus R, Loiseaux B et al. Programmable 2D laser marking device based on a pulsed UV image coherent amplifier[J]. Proceedings of SPIE, 5063, 386-388(2003).

    [42] Imbrock J, Kip D, Krätzig E. Nonvolatile holographic storage in iron-doped lithium tantalate with continuous-wave laser light[J]. Optics Letters, 24, 1302-1304(1999).

    [43] Bai Y S, Kachru R. Nonvolatile holographic storage with two-step recording in lithium niobate using CW lasers[J]. Physical Review Letters, 78, 2944-2947(1997).

    [44] Montemezzani G, Günter P. Thermal hologram fixing in pure and doped KNbO3 crystals[J]. Journal of the Optical Society of America B, 7, 2323-2328(1990).

    [45] Kirillov D, Feinberg J. Fixable complementary gratings in photorefractive BaTiO3[J]. Optics Letters, 16, 1520-1522(1991).

    [46] Staebler D L, Burke W J, Phillips W et al. Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3[J]. Applied Physics Letters, 26, 182-184(1975).

    [47] Kong Y F, Liu F C, Tian T et al. Fast responsive nonvolatile holographic storage in LiNbO3 triply doped with Zr, Fe, and Mn[J]. Optics Letters, 34, 3896-3898(2009).

    [48] Zhou Z F, Wang B, Lin S P et al. Defect structure and nonvolatile hologram storage properties in Hf∶Fe∶Mn∶LiNbO3 crystals[J]. Optik, 122, 1179-1182(2011).

    [49] Zhang G Y, Wu Y Q, Liu S M et al. Light climbing effect in LiNbO3∶Fe crystals[J]. Chinese Journal of Lasers, 14, 511-512(1987).

    [50] Gao H, Fan X H, Xiong W et al. Recent advances in optical dynamic meta-holography[J]. Opto-Electronic Advances, 4, 210030(2021).

    [51] Wakunami K, Hsieh P Y, Oi R et al. Projection-type see-through holographic three-dimensional display[J]. Nature Communications, 7, 12954(2016).

    [52] Zhang C L, Zhang D F, Bian Z P. Dynamic full-color digital holographic 3D display on single DMD[J]. Opto-Electronic Advances, 4, 200049(2021).

    [53] Yendo T, Fujii T, Tanimoto M et al. The Seelinder: cylindrical 3D display viewable from 360 degrees[J]. Journal of Visual Communication and Image Representation, 21, 586-594(2010).

    [54] Blanche P A. Holography, and the future of 3D display[J]. Light: Advanced Manufacturing, 2, 28(2021).

    [55] Yu H, Lee K, Park J et al. Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields[J]. Nature Photonics, 11, 186-192(2017).

    [56] Carmigniani J, Furht B, Anisetti M et al. Augmented reality technologies, systems and applications[J]. Multimedia Tools and Applications, 51, 341-377(2011).

    [57] Mystakidis S. Metaverse[J]. Encyclopedia, 2, 486-497(2022).

    [58] Xing Y, Lin X Y, Zhang L B et al. Integral imaging-based tabletop light field 3D display with large viewing angle[J]. Opto-Electronic Advances, 6, 220178(2023).

    [59] Xia X X, Zheng Z R, Liu X et al. Omnidirectional-view three-dimensional display system based on cylindrical selective-diffusing screen[J]. Applied Optics, 49, 4915-4920(2010).

    [60] Xiao X, Wakunami K, Nam J et al. Three-dimensional holographic display using dense ray sampling and integral imaging[J]. Proceedings of SPIE, 9117, 91170R(2014).

    [61] Köber S, Salvador M, Meerholz K. Organic photorefractive materials and applications[J]. Advanced Materials, 23, 4725-4763(2011).

    [62] Blanche P A, Bablumian A, Voorakaranam R et al. Holographic three-dimensional telepresence using large-area photorefractive polymer[J]. Nature, 468, 80-83(2010).

    [63] Gao H Y, Liu P, Zeng C et al. Holographic storage of three-dimensional image and data using photopolymer and polymer dispersed liquid crystal films[J]. Chinese Physics B, 25, 094205(2016).

    [64] Gao H Y, Liu P, Liu J C et al. Study on permanent holographic recording in trimethylol propane triacrylate-based photopolymer films with high diffraction efficiency[J]. Journal of the Optical Society of America B, 34, B22-B27(2017).

    [65] Li X, Li Y, Xiang Y et al. Highly photorefractive hybrid liquid crystal device for a video-rate holographic display[J]. Optics Express, 24, 8824-8831(2016).

    [66] Zhou P C, Li Y, Liu S X et al. Colour 3D holographic display based on a quantum-dot-doped liquid crystal[J]. Liquid Crystals, 46, 1478-1484(2019).

    [67] Dong Y F, Liu S G, Kong Y F et al. Fast photorefractive response of vanadium-doped lithium niobate in the visible region[J]. Optics Letters, 37, 1841-1843(2012).

    [68] Tian T, Kong Y F, Liu S G et al. Photorefraction of molybdenum-doped lithium niobate crystals[J]. Optics Letters, 37, 2679-2681(2012).

    [69] Tian T A, Kong Y F, Liu S G et al. Fast UV-vis photorefractive response of Zr and Mg codoped LiNbO3∶Mo[J]. Optics Express, 21, 10460-10466(2013).

    [70] Zhang W L, Cheng W D, Zhang H et al. A strong second-harmonic generation material Cd4BiO(BO3)3 originating from 3-chromophore asymmetric structures[J]. Journal of the American Chemical Society, 132, 1508-1509(2010).

    [71] Xue D, Betzler K, Hesse H et al. Origin of the large nonlinear optical coefficients in bismuth borate BiB3O6[J]. Physica Status Solidi (a), 176, R1-R2(1999).

    [72] Zheng D H, Kong Y F, Liu S G et al. The photorefractive characteristics of bismuth-oxide doped lithium niobate crystals[J]. AIP Advances, 5, 017132(2015).

    [73] Zheng D H, Kong Y F, Liu S G et al. The simultaneous enhancement of photorefraction and optical damage resistance in MgO and Bi2O3 co-doped LiNbO3 crystals[J]. Scientific Reports, 6, 20308(2016).

    [74] Li L L, Li Y L, Zhao X. Hybrid density functional theory insight into the stability and microscopic properties of Bi-doped LiNbO3: lone electron pair effect[J]. Physical Review B, 96, 115118(2017).

    [75] Wang S L, Shan Y D, Wang W W et al. Lone-pair electron effect induced a rapid photorefractive response in site-controlled LiNbO3∶Bi,M (M=Zn, In, Zr) crystals[J]. Applied Physics Letters, 118, 191902(2021).

    Tools

    Get Citation

    Copy Citation Text

    Dahuai Zheng, Shuolin Wang, Junkun Chen, Yuqi Zhang, Hongde Liu, Mengxin Ren, Yongfa Kong, Jingjun Xu. Lithium Niobate Crystals: From Holographic Storage to 3D Display[J]. Chinese Journal of Lasers, 2023, 50(18): 1813001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: micro and nano optics

    Received: May. 22, 2023

    Accepted: Jul. 12, 2023

    Published Online: Aug. 29, 2023

    The Author Email: Ren Mengxin (ren_mengxin@nankai.edu.cn), Kong Yongfa (kongyf@nankai.edu.cn), Xu Jingjun (jjxu@nankai.edu.cn)

    DOI:10.3788/CJL230850

    Topics