Chinese Optics Letters, Volume. 20, Issue 7, 073602(2022)

Probing fluorescence quantum efficiency of single molecules in an organic matrix by monitoring lifetime change during sublimation On the Cover

Penglong Ren1,2, Shangming Wei1,2, Pu Zhang1,2, and Xue-Wen Chen1,2、*
Author Affiliations
  • 1School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    References(35)

    [1] T. Basché, W. Moerner, M. Orrit, U. Wild. Single-Molecule Optical Detection, Imaging and Spectroscopy(1997).

    [2] B. Lounis, M. Orrit. Single-photon sources. Rep. Prog. Phys., 68, 1129(2005).

    [3] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys., 79, 135(2007).

    [4] S. Scheel. Single-photon sources–an introduction. J. Mod. Opt., 56, 141(2009).

    [5] S. V. Polyakov, A. L. Migdall. Quantum radiometry. J. Mod. Opt., 56, 1045(2009).

    [6] P. Zhang, L. Lu, F. Qu, X. Jiang, X. Zheng, Y. Lu, S. Zhu, X.-S. Ma. High-quality quantum process tomography of time-bin qubit’s transmission over a metropolitan fiber network and its application. Chin. Opt. Lett., 18, 082701(2020).

    [7] P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, A. Imamoglu. A quantum dot single-photon turnstile device. Science, 290, 2282(2000).

    [8] J. C. Loredo, N. A. Zakaria, N. Somaschi, C. Anton, L. de Santis, V. Giesz, T. Grange, M. A. Broome, O. Gazzano, G. Coppola, I. Sagnes, A. Lemaitre, A. Auffeves, P. Senellart, M. P. Almeida, A. G. White. Scalable performance in solid-state single-photon sources. Optica, 3, 433(2016).

    [9] X. Ding, Y. He, Z. C. Duan, N. Gregersen, M. C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, J.-W. Pan. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett., 116, 020401(2016).

    [10] I. Aharonovich, S. Castelletto, D. A. Simpson, C. H. Su, A. D. Greentree, S. Prawer. Diamond-based single-photon emitters. Rep. Prog. Phys., 74, 076501(2011).

    [11] I. Aharonovich, S. Castelletto, D. A. Simpson, C. H. Su, A. D. Greentree, S. Prawer. Diamond-based single-photon emitters. Rep. Prog. Phys., 74, 076501(2011).

    [12] B. Zhao, Y. Dong, S. Zhang, X. Chen, W. Zhu, F. Sun. Improving the NV generation efficiency by electron irradiation. Chin. Opt. Lett., 18, 080201(2020).

    [13] J. Hong, C. Jin, J. Yuan, Z. Zhang. Atomic defects in two-dimensional materials: from single-atom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis. Adv. Mater., 29, 1606434(2017).

    [14] C. Toninelli, K. Early, J. Bremi, A. Renn, S. Götzinger, V. Sandoghdar. Near-infrared single-photons from aligned molecules in ultrathin crystalline films at room temperature. Opt. Express, 18, 6577(2010).

    [15] C. Polisseni, K. D. Major, S. Boissier, S. Grandi, A. S. Clark, E. A. Hinds. Stable, single-photon emitter in a thin organic crystal for application to quantum-photonic devices. Opt. Express, 24, 5615(2016).

    [16] S. Wei, P. Ren, Y. He, P. Zhang, X.-W. Chen. Single-molecule-doped crystalline nanosheets for delicate photophysics studies and directional single-photon-emitting devices. Phys. Rev. Appl, 13, 064023(2020).

    [17] A. A. Nicolet, C. Hofmann, M. A. Kol’chenko, B. Kozankiewicz, M. Orrit. Single dibenzoterrylene molecules in an anthracene crystal: spectroscopy and photophysics. ChemPhysChem, 8, 1215(2007).

    [18] D. Wang, H. Kelkar, D. Martin-Cano, T. Utikal, S. Götzinger, V. Sandoghdar. Coherent coupling of a single molecule to a scanning Fabry–Perot microcavity. Phys. Rev. X, 7, 021014(2017).

    [19] S. Pazzagli, P. Lombardi, D. Martella, M. Colautti, B. Tiribilli, F. S. Cataliotti, C. Toninelli. Self-assembled nanocrystals of polycyclic aromatic hydrocarbons show photostable single-photon emission. ACS Nano, 12, 4295(2018).

    [20] J. Hwang, E. A. Hinds. Dye molecules as single-photon sources and large optical nonlinearities on a chip. New J. Phys., 13, 085009(2011).

    [21] S. Grandi, M. P. Nielsen, J. Cambiasso, S. Boissier, K. D. Major, C. Reardon, T. F. Krauss, R. F. Oulton, E. A. Hinds, A. S. Clark. Hybrid plasmonic waveguide coupling of photons from a single molecule. APL Photonics, 4, 086101(2019).

    [22] P. Türschmann, N. Rotenberg, J. Renger, I. Harder, O. Lohse, T. Utikal, S. Götzinger, V. Sandoghdar. Chip-based all-optical control of single molecules coherently coupled to a nanoguide. Nano Lett., 17, 4941(2017).

    [23] D. Rattenbacher, A. Shkarin, J. Renger, T. Utikal, S. Götzinger, V. Sandoghdar. Coherent coupling of single molecules to on-chip ring resonators. New J. Phys., 21, 062002(2019).

    [24] X. Brokmann, L. Coolen, M. Dahan, J. P. Hermier. Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission. Phys. Rev. Lett., 93, 107403(2004).

    [25] B. C. Buchler, T. Kalkbrenner, C. Hettich, V. Sandoghdar. Measuring the quantum efficiency of the optical emission of single radiating dipoles using a scanning mirror. Phys. Rev. Lett., 95, 063003(2005).

    [26] S. Castelletto, I. Aharonovich, B. C. Gibson, B. C. Johnson, S. Prawer. Imaging and quantum-efficiency measurement of chromium emitters in diamond. Phys. Rev. Lett., 105, 217403(2010).

    [27] R. J. Walters, J. Kalkman, A. Polman, H. A. Atwater, M. J. A. de Dood. Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO2. Phys. Rev. B, 73, 132302(2006).

    [28] W. Xu, X. Hou, Y. Meng, R. Meng, Z. Wang, H. Qin, X. Peng, X.-W. Chen. Deciphering charging status, absolute quantum efficiency, and absorption cross section of multicarrier states in single colloidal quantum dots. Nano Lett., 17, 7487(2017).

    [29] E. M. Purcell, H. C. Torrey, R. V. Pound. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev., 69, 37(1946).

    [30] W. L. Barnes. Fluorescence near interfaces: the role of photonic mode density. J. Mod. Opt., 45, 661(1998).

    [31] G. Chen, J. Zhu, X. Li. Influence of a dielectric decoupling layer on the local electric field and molecular spectroscopy in plasmonic nanocavities: a numerical study. Chin. Opt. Lett., 19, 123001(2021).

    [32] A. A. Nicolet, P. Bordat, C. Hofmann, M. A. Kol’chenko, B. Kozankiewicz, R. Brown, M. Orrit. Single dibenzoterrylene molecules in an anthracene crystal: main insertion sites. ChemPhysChem, 8, 1929(2007).

    [33] L. Novotny, B. Hecht. Principles of Nano-Optics(2012).

    [34] I. Nakada. The optical properties of anthracene single crystals. J. Phys. Soc. Jpn., 17, 113(1962).

    [35] L. A. Nakhimovsky, I. Joussot-Dubien, M. Lamotte. Handbook of Low-Temperature Electronic Spectra of Polycyclic Aromatic Hydrocarbons(1989).

    Tools

    Get Citation

    Copy Citation Text

    Penglong Ren, Shangming Wei, Pu Zhang, Xue-Wen Chen, "Probing fluorescence quantum efficiency of single molecules in an organic matrix by monitoring lifetime change during sublimation," Chin. Opt. Lett. 20, 073602 (2022)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Nanophotonics, Metamaterials, and Plasmonics

    Received: Jan. 17, 2022

    Accepted: Apr. 14, 2022

    Published Online: May. 6, 2022

    The Author Email: Xue-Wen Chen (xuewen_chen@hust.edu.cn)

    DOI:10.3788/COL202220.073602

    Topics