Laser & Optoelectronics Progress, Volume. 62, Issue 10, 1028001(2025)

Lightweight Remote Sensing Image Super-Resolution Reconstruction Based on Saliency Analysis and Information Distillation

Xueli Shen, Xiaoming Zhu*, and Haibo Jin
Author Affiliations
  • School of Software, Liaoning Technical University, Huludao 125105, Liaoning , China
  • show less
    Figures & Tables(20)
    Overall network architecture diagram
    Structure diagram of the saliency detector. (a) Saliency detection module; (b) residual block
    Different feature extraction paths for DRM
    FRU structure diagram
    Diagrams of the multiscale void separable convolution module. (a) MDAM; (b) MSCM
    Improved CPAM
    Dual-path upsampling module
    Images in the GeoEye-1 dataset
    Comparison of the visual effects when different algorithms are magnified 4 times. (a) Google Earth; (b) GeoEye-1
    Comparison of reconstruction effect of different algorithms when enlarging 4 times on GeoEye-1 dataset
    Influence of the number of MDAM on PSNR
    • Table 1. Comparison of different algorithms in parameters, PSNR, and SSIM with magnification of 2 in the two test sets

      View table

      Table 1. Comparison of different algorithms in parameters, PSNR, and SSIM with magnification of 2 in the two test sets

      MethodParameter /103GeoEye-1Google Earth
      PSNR /dBSSIMPSNR /dBSSIM
      Bicubie24.840.790028.030.8243
      DRRN2730126.680.857129.820.8821
      IMDN1369426.700.857329.980.8816
      CTN2841226.670.858329.800.8782
      CARN11159226.690.858330.000.8818
      CFSRCNN12131026.720.859430.000.8823
      FeNet2961826.720.859429.950.8810
      DSRNet3075126.780.861129.990.8819
      SCNet-B3156126.760.860629.980.8817
      SalDRN2657126.800.861729.970.8811
      Proposed54226.850.861230.020.8820
    • Table 2. Comparison of different algorithms in parameter, PSNR, and SSIM with magnification of 3 in the two test sets

      View table

      Table 2. Comparison of different algorithms in parameter, PSNR, and SSIM with magnification of 3 in the two test sets

      MethodParameter /103GeoEye-1Google Earth
      PSNR /dBSSIMPSNR /dBSSIM
      Bicubie22.520.641425.250.6841
      DRRN2730123.880.743426.960.7724
      IMDN1370323.970.742226.990.7719
      CTN2841223.830.736526.830.7679
      CARN11159223.830.736526.830.7679
      CFSRCNN12149523.980.742927.010.7729
      FeNet2962723.910.740726.950.7705
      DSRNet3075923.990.743527.010.7726
      SCNet-B3159323.970.742926.960.7728
      SalDRN2657123.980.743726.970.7722
      Proposed54224.040.744027.050.7735
    • Table 3. Comparison of different algorithms in parameter, PSNR, and SSIM with magnification of 4 in the two test sets

      View table

      Table 3. Comparison of different algorithms in parameter, PSNR, and SSIM with magnification of 4 in the two test sets

      MethodParameter /103GeoEye-1Google Earth
      PSNR /dBSSIMPSNR /dBSSIM
      Bicubie21.250.530723.750.5800
      DRRN2730122.360.643925.140.6764
      IMDN1371522.430.640825.190.6780
      CTN2841222.300.632425.040.6698
      CARN11158022.390.638325.150.6761
      CFSRCNN12145822.490.645325.220.6799
      FeNet2963922.390.637125.160.6753
      DSRNet3076622.450.642725.210.6800
      SCNet-B3158222.440.642225.180.6786
      SalDRN2657122.420.640825.170.6768
      Proposed54722.540.644125.280.6801
    • Table 4. Comparison of runtime of each algorithm

      View table

      Table 4. Comparison of runtime of each algorithm

      MethodRuntime /ms
      CARN114.6
      IMDN135.3
      SCNet-B316.2

      CFSRCNN12

      FeNet29

      11.4

      12.8

      Proposed13.6
      DSRNet 3014.7
      SalDRN2615.4
      CTN2818.4
    • Table 5. Comparative experiments

      View table

      Table 5. Comparative experiments

      MethodsParameter /103PSNR/dB
      IMDN(IMDB)71525.19
      IMDN(MDAM)72325.21
      SDM+DRM(IMDB)57025.23
      SDM+DRM(MDAM)57925.26
      SDM+DRM(MDAM)+DSM54725.28
    • Table 6. Comparison of ablation experiments of each module

      View table

      Table 6. Comparison of ablation experiments of each module

      ModuleMSCMCPAMParameter /103PSNR /dB
      3×3+CCA××53825.23
      MSCM+CCA×54325.26
      3×3+CPAM×54125.25
      Proposed54725.28
    • Table 7. Comparison of results using different activation functions

      View table

      Table 7. Comparison of results using different activation functions

      Activation functionParameter /103PSNR /dB
      ReLU53126.82
      LeakyReLU53326.83
      Meta-Acon54226.85
    • Table 8. Effect of image block size on model reconstruction quality

      View table

      Table 8. Effect of image block size on model reconstruction quality

      Patch size /(pixel×pixel)GeoEye-1Google Earth
      PSNR /dBSSIMPSNR /dBSSIM
      32×3222.520.644025.270.6800
      40×4022.490.643825.260.6801
      48×4822.540.644125.280.6801
      56×5622.500.643525.240.6796
      64×6422.460.643225.230.6795
    • Table 9. Influence of path selection switch threshold setting on model in DRM

      View table

      Table 9. Influence of path selection switch threshold setting on model in DRM

      Threshold settingsPassing ratios /%FLOPs /106PSNR /dB
      [0,0,0][100, 100, 100]352026.87
      [0,0.25,0.50][100, 75, 46]262426.85
      [0,0.50,0.75][100, 46, 25]212626.80
      [0,0.75,1.00][100, 25, 0]150126.75
    Tools

    Get Citation

    Copy Citation Text

    Xueli Shen, Xiaoming Zhu, Haibo Jin. Lightweight Remote Sensing Image Super-Resolution Reconstruction Based on Saliency Analysis and Information Distillation[J]. Laser & Optoelectronics Progress, 2025, 62(10): 1028001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Sep. 6, 2024

    Accepted: Oct. 28, 2024

    Published Online: May. 9, 2025

    The Author Email: Xiaoming Zhu (1945595956@qq.com)

    DOI:10.3788/LOP241966

    CSTR:32186.14.LOP241966

    Topics