Laser & Optoelectronics Progress, Volume. 61, Issue 3, 0314005(2024)
Fabrication of High-Performance LIG-Fe3O4 Composite-Based Micro-Supercapacitor by Laser Direct Writing (Invited)
[1] Yang C, Cheng H H, Qu L T. Research advancement on laser micro-nano processing of new energy devices[J]. Chinese Journal of Lasers, 48, 1502004(2021).
[2] Zhou W P, Wang S T, Yu Y C et al. Research progress in fabrication of embedded microball lenses, energy devices and biosensors by femtosecond laser direct writing[J]. Chinese Journal of Lasers, 44, 0102002(2017).
[3] Zhou H, Li J C, Han X C et al. Deformable moisture-activated all-solid-state planar microsupercapacitors[J]. Applied Physics Letters, 122, 103901(2023).
[4] Wang Y M, Wu X L, Han Y Q et al. Flexible supercapacitor: overview and outlooks[J]. Journal of Energy Storage, 42, 103053(2021).
[5] Li L, Zhang J B, Peng Z W et al. High-performance pseudocapacitive microsupercapacitors from laser-induced graphene[J]. Advanced Materials, 28, 838-845(2016).
[6] Fu X Y, Chen Z D, Han D D et al. Laser fabrication of graphene-based supercapacitors[J]. Photonics Research, 8, 577-588(2020).
[7] El-Kady M F, Ihns M, Li M P et al. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 4233-4238(2015).
[8] Lao J J, Sun P, Liu F et al. In situ plasmonic optical fiber detection of the state of charge of supercapacitors for renewable energy storage[J]. Light: Science & Applications, 7, 34(2018).
[9] Xiong G P, Meng C Z, Reifenberger R G et al. A review of graphene-based electrochemical microsupercapacitors[J]. Electroanalysis, 26, 30-51(2014).
[10] Noori A, El-Kady M F, Rahmanifar M S et al. Towards establishing standard performance metrics for batteries, supercapacitors and beyond[J]. Chemical Society Reviews, 48, 1272-1341(2019).
[11] Tan Y B, Lee J M. Graphene for supercapacitor applications[J]. Journal of Materials Chemistry A, 1, 14814-14843(2013).
[12] Sharma K, Arora A, Tripathi S K. Review of supercapacitors: materials and devices[J]. Journal of Energy Storage, 21, 801-825(2019).
[13] Mei H H, Cui J L, Cheng Y et al. Heterogeneous connection of carbon nanotubes with metal electrodes and its electrical properties[J]. Chinese Journal of Lasers, 48, 0802023(2021).
[14] Chen Z D, Li J C, Xiao S L et al. Laser reduced graphene oxide for thin film flexible electronic devices[J]. Laser & Optoelectronics Progress, 57, 111428(2020).
[15] Huo J P, Xiao Y, Sun T M et al. Electrical enhancement of SiC nanowire joints based on femtosecond laser reduction of GO[J]. Chinese Journal of Lasers, 48, 0802007(2021).
[16] Bose S, Kuila T, Mishra A K et al. Carbon-based nanostructured materials and their composites as supercapacitor electrodes[J]. Journal of Materials Chemistry, 22, 767-784(2012).
[17] Liu X Q, Zhang Y L, Li Q K et al. Biomimetic sapphire windows enabled by inside-out femtosecond laser deep-scribing[J]. PhotoniX, 3, 1(2022).
[18] Li K, Yang M, Cai C K et al. Handling mode and polarization in fiber by fs-laser inscribed (de)multiplexer and silicon switch array[J]. PhotoniX, 4, 14(2023).
[19] Wang H, Zhang Y L, Han D D et al. Laser fabrication of modular superhydrophobic chips for reconfigurable assembly and self-propelled droplet manipulation[J]. PhotoniX, 2, 17(2021).
[20] Zhang B, Wang Z, Tan D Z et al. Ultrafast laser-induced self-organized nanostructuring in transparent dielectrics: fundamentals and applications[J]. PhotoniX, 4, 24(2023).
[21] Sugioka K, Cheng Y. Ultrafast lasers: reliable tools for advanced materials processing[J]. Light: Science & Applications, 3, e149(2014).
[22] Sun Y L, Dong W F, Niu L G et al. Protein-based soft micro-optics fabricated by femtosecond laser direct writing[J]. Light: Science & Applications, 3, e129(2014).
[23] Zhang L H, Yang Y Q, Lai K X. Laser in large-scale integrated circuit: application and prospects[J]. Laser & Optronics Progress, 42, 48-55(2005).
[24] Chen J M. Development of laser micro technology[J]. Laser & Optoelectronics Progress, 43, 25-29(2006).
[25] Liao J N, Wang X D, Zhou X W et al. Femtosecond laser direct writing of copper microelectrodes[J]. Chinese Journal of Lasers, 46, 1002013(2019).
[26] Yuan Y J, Li X. Femtosecond laser processing of graphene and its application[J]. Laser & Optoelectronics Progress, 57, 111414(2020).
[27] Liu Y Q, Zhang J R, Han D D et al. Recent progress in laser-processed graphene for sensors and actuators[J]. Chinese Journal of Lasers, 48, 1501003(2021).
[28] Li C, Yang Y W, Xia T et al. Integrated sensor based on laser-induced graphene on wood[J]. Chinese Journal of Lasers, 49, 0202005(2022).
[29] Han D D, Cai Q, Li J C et al. Preparation of laser induced graphene based underwater superoleophobic bionic surface[J]. Laser & Optoelectronics Progress, 57, 151408(2020).
[30] Lee Y, Low M J, Yang D et al. Ultra-thin light-weight laser-induced-graphene (LIG) diffractive optics[J]. Light: Science & Applications, 12, 146(2023).
[31] Wang Z Y, Hu B, Wu X D. Research progress of laser-induced graphene technology[J]. Laser & Optoelectronics Progress, 58, 0100003(2021).
[32] Ye R Q, James D K, Tour J M. Laser-induced graphene[J]. Accounts of Chemical Research, 51, 1609-1620(2018).
[33] Wang J, Zhou R D, Zhang N et al. Process parameters of direct writing polyimide by 1064 nm fiber laser[J]. Chinese Journal of Lasers, 48, 1002112(2021).
[34] Ye R Q, James D K, Tour J M. Laser-induced graphene: from discovery to translation[J]. Advanced Materials, 31, 1803621(2019).
[35] Xing X K, Jiang X, Liu F F et al. Fiber Bragg grating humidity sensor based on polyimide material[J]. Laser & Optoelectronics Progress, 59, 1328002(2022).
[36] Tang J G, Huang S Q, Guo H Y et al. On-line writing and performance high-temperature resistant fiber Bragg grating array[J]. Laser & Optoelectronics Progress, 60, 0706002(2023).
[37] Liu X L, Xiong Y Q, Yang J P et al. Simulation of temperature field for laser etching of aluminum thin films on polyimide substrate[J]. Chinese Journal of Lasers, 42, 0703006(2015).
[38] Chen X Y, Liu H, Zheng Y J et al. Highly compressible and robust polyimide/carbon nanotube composite aerogel for high-performance wearable pressure sensor[J]. ACS Applied Materials & Interfaces, 11, 42594-42606(2019).
[39] Zhang X Y, Sun S H, Sun X J et al. Plasma-induced, nitrogen-doped graphene-based aerogels for high-performance supercapacitors[J]. Light: Science & Applications, 5, e16130(2016).
[40] Wang L F, Guan Y C, Ding Y et al. Fabrication of LIG/RuO2 composite electrode by femtosecond laser direct writing[J]. Chinese Journal of Lasers, 49, 1602016(2022).
[41] Bai C C, Zhang J H, Gao C et al. Planar micro-supercapacitor based on laser processing[J]. Chinese Journal of Lasers, 48, 0202013(2021).
[42] Peng Z W, Ye R Q, Mann J A et al. Flexible boron-doped laser-induced graphene microsupercapacitors[J]. ACS Nano, 9, 5868-5875(2015).
[43] Lian P C, Zhu X F, Xiang H F et al. Enhanced cycling performance of Fe3O4-graphene nanocomposite as an anode material for lithium-ion batteries[J]. Electrochimica Acta, 56, 834-840(2010).
Get Citation
Copy Citation Text
Lu Li, Hao Zhou, Dongdong Han. Fabrication of High-Performance LIG-Fe3O4 Composite-Based Micro-Supercapacitor by Laser Direct Writing (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(3): 0314005
Category: Lasers and Laser Optics
Received: Sep. 28, 2023
Accepted: Dec. 1, 2023
Published Online: Feb. 20, 2024
The Author Email: Dongdong Han (handongdong@jlu.edu.cn)
CSTR:32186.14.LOP232214