Chinese Journal of Lasers, Volume. 50, Issue 17, 1714008(2023)
Research Advances in Integrated Electron Accelerators Driven by Spectrum Band from Terahertz to Optical Waves
[1] Anderle D P, Bertone V, Cao X et al. Electron-ion collider in China[J]. Frontiers of Physics, 16, 64701(2021).
[2] Dutta B, Ghosh S, Gurrola A et al. Probing an MeV-scale scalar boson in association with a TeV-scale top-quark partner at the LHC[J]. Journal of High Energy Physics, 2023, 164(2023).
[3] Bostedt C, Boutet S, Fritz D M et al. Linac Coherent Light Source: the first five years[J]. Reviews of Modern Physics, 88, 015007(2016).
[4] Decking W, Abeghyan S, Abramian P et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator[J]. Nature Photonics, 14, 391-397(2020).
[5] Beck J A. Process variation in electron beam sterilization[J]. Radiation Physics and Chemistry, 81, 1236-1240(2012).
[6] Veronesi U, Orecchia R, Maisonneuve P et al. Intraoperative radiotherapy versus external radiotherapy for early breast cancer (ELIOT): a randomised controlled equivalence trial[J]. The Lancet Oncology, 14, 1269-1277(2013).
[7] Spitz D R, Buettner G R, Petronek M S et al. An integrated physico-chemical approach for explaining the differential impact of FLASH versus conventional dose rate irradiation on cancer and normal tissue responses[J]. Radiotherapy and Oncology, 139, 23-27(2019).
[8] Yang J, Zhu X L, Wolf T J A et al. Imaging CF3I conical intersection and photodissociation dynamics with ultrafast electron diffraction[J]. Science, 361, 64-67(2018).
[9] Horstmann J G, Böckmann H, Wit B et al. Coherent control of a surface structural phase transition[J]. Nature, 583, 232-236(2020).
[10] Kilpatrick W D. Criterion for vacuum sparking designed to include both RF and DC[J]. Review of Scientific Instruments, 28, 824-826(1957).
[11] Malka V, Faure J, Gauduel Y A et al. Principles and applications of compact laser-plasma accelerators[J]. Nature Physics, 4, 447-453(2008).
[12] Leemans W P, Gonsalves A J, Mao H S et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime[J]. Physical Review Letters, 113, 245002(2014).
[13] Guénot D, Gustas D, Vernier A et al. Relativistic electron beams driven by kHz single-cycle light pulses[J]. Nature Photonics, 11, 293-296(2017).
[14] Nanni E A, Huang W R, Hong K H et al. Terahertz-driven linear electron acceleration[J]. Nature Communications, 6, 8486(2015).
[15] Hibberd M T, Healy A L, Lake D S et al. Acceleration of relativistic beams using laser-generated terahertz pulses[J]. Nature Photonics, 14, 755-759(2020).
[16] Xu H X, Yan L X, Du Y C et al. Cascaded high-gradient terahertz-driven acceleration of relativistic electron beams[J]. Nature Photonics, 15, 426-430(2021).
[17] Breuer J, Hommelhoff P. Laser-based acceleration of nonrelativistic electrons at a dielectric structure[J]. Physical Review Letters, 111, 134803(2013).
[18] Peralta E A, Soong K, England R J et al. Demonstration of electron acceleration in a laser-driven dielectric microstructure[J]. Nature, 503, 91-94(2013).
[19] Sapra N V, Yang K Y, Vercruysse D et al. On-chip integrated laser-driven particle accelerator[J]. Science, 367, 79-83(2020).
[20] Maier A R, Delbos N M, Eichner T et al. Decoding sources of energy variability in a laser-plasma accelerator[J]. Physical Review X, 10, 031039(2020).
[21] Wang W T, Feng K, Ke L T et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator[J]. Nature, 595, 516-520(2021).
[22] Labat M, Cabadağ J C, Ghaith A et al. Seeded free-electron laser driven by a compact laser plasma accelerator[J]. Nature Photonics, 17, 150-156(2023).
[23] Shimoda K. Proposal for an electron accelerator using an optical maser[J]. Applied Optics, 1, 33-35(1962).
[24] Palmer R B. Interaction of relativistic particles and free electromagnetic waves in the presence of a static helical magnet[J]. Journal of Applied Physics, 43, 3014-3023(1972).
[25] van Steenbergen A, Gallardo J, Sandweiss J et al. Observation of energy gain at the BNL inverse free-electron-laser accelerator[J]. Physical Review Letters, 77, 2690-2693(1996).
[26] Piestrup M A, Rothbart G B, Fleming R N et al. Momentum modulation of a free electron beam with a laser[J]. Journal of Applied Physics, 46, 132-137(1975).
[27] Takeda Y, Matsui I. Laser linac with grating[J]. Nuclear Instruments and Methods, 62, 306-310(1968).
[28] Mizuno K, Pae J, Nozokido T et al. Experimental evidence of the inverse Smith-Purcell effect[J]. Nature, 328, 45-47(1987).
[29] Huang W R, Fallahi A, Wu X J et al. Terahertz-driven,all-optical electron gun[J]. Optica, 3, 1209-1212(2016).
[30] Zhang D F, Fallahi A, Hemmer M et al. Segmented terahertz electron accelerator and manipulator (STEAM)[J]. Nature Photonics, 12, 336-342(2018).
[31] Zhang D F, Fakhari M, Cankaya H et al. Cascaded multicycle terahertz-driven ultrafast electron acceleration and manipulation[J]. Physical Review X, 10, 011067(2020).
[32] Curry E, Fabbri S, Maxson J et al. Meter-scale terahertz-driven acceleration of a relativistic beam[J]. Physical Review Letters, 120, 094801(2018).
[33] Zhang D F, Fallahi A, Hemmer M et al. Femtosecond phase control in high-field terahertz-driven ultrafast electron sources[J]. Optica, 6, 872-877(2019).
[34] Snively E C, Othman M A K, Kozina M et al. Femtosecond compression dynamics and timing jitter suppression in a THz-driven electron bunch compressor[J]. Physical Review Letters, 124, 054801(2020).
[35] Kealhofer C, Schneider W, Ehberger D et al. All-optical control and metrology of electron pulses[J]. Science, 352, 429-433(2016).
[36] Zhao L R, Wang Z, Lu C et al. Terahertz streaking of few-femtosecond relativistic electron beams[J]. Physical Review X, 8, 021061(2018).
[37] Li R K, Hoffmann M C, Nanni E A et al. Terahertz-based subfemtosecond metrology of relativistic electron beams[J]. Physical Review Accelerators and Beams, 22, 012803(2019).
[38] Breuer J, Graf R, Apolonski A et al. Dielectric laser acceleration of nonrelativistic electrons at a single fused silica grating structure: experimental part[J]. Physical Review Special Topics-Accelerators and Beams, 17, 021301(2014).
[39] Wu Z R, England R J, Ng C K et al. Coupling power into accelerating mode of a three-dimensional silicon woodpile photonic band-gap waveguide[J]. Physical Review Special Topics-Accelerators and Beams, 17, 081301(2014).
[40] Black D S, Zhao Z X, Leedle K J et al. Operating modes of dual-grating dielectric laser accelerators[J]. Physical Review Accelerators and Beams, 23, 114001(2020).
[41] Hirano T, Urbanek K E, Ceballos A C et al. A compact electron source for the dielectric laser accelerator[J]. Applied Physics Letters, 116, 161106(2020).
[42] Cesar D, Custodio S, Maxson J et al. High-field nonlinear optical response and phase control in a dielectric laser accelerator[J]. Communications Physics, 1, 46(2018).
[43] Shiloh R, Illmer J, Chlouba T et al. Electron phase-space control in photonic chip-based particle acceleration[J]. Nature, 597, 498-502(2021).
[44] Joshi C. The Los Alamos Laser Acceleration of Particles Workshop and beginning of the advanced accelerator concepts field[J]. AIP Conference Proceedings, 1507, 61-66(2012).
[45] England R J, Noble R J, Bane K et al. Dielectric laser accelerators[J]. Reviews of Modern Physics, 86, 1337-1389(2014).
[46] Hebling J, Almasi G, Kozma I et al. Velocity matching by pulse front tilting for large area THz-pulse generation[J]. Optics Express, 10, 1161-1166(2002).
[47] Zhang B L, Ma Z Z, Ma J L et al. 1.4-mJ high energy terahertz radiation from lithium niobates[J]. Laser & Photonics Reviews, 15, 2000295(2021).
[48] Wu X J, Kong D Y, Hao S B et al. Generation of 13.9-mJ terahertz radiation from lithium niobate materials[J]. Advanced Materials, 35, 2208947(2023).
[49] Zhang L L, Wang W M, Wu T et al. Strong terahertz radiation from a liquid-water line[J]. Physical Review Applied, 12, 014005(2019).
[50] Fülöp J A, Tzortzakis S, Kampfrath T. Laser-driven strong-field terahertz sources[J]. Advanced Optical Materials, 8, 1900681(2020).
[51] Koulouklidis A D, Gollner C, Shumakova V et al. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments[J]. Nature Communications, 11, 292(2020).
[52] Zhang D D, Zeng Y S, Bai Y F et al. Coherent surface plasmon polariton amplification via free-electron pumping[J]. Nature, 611, 55-60(2022).
[53] Othman M A K, Hoffmann M C, Kozina M E et al. Parallel-plate waveguides for terahertz-driven MeV electron bunch compression[J]. Optics Express, 27, 23791-23800(2019).
[54] Liao G Q, Liu H, Scott G G et al. Towards terawatt-scale spectrally tunable terahertz pulses via relativistic laser-foil interactions[J]. Physical Review X, 10, 031062(2020).
[55] Fallahi A, Fakhari M, Yahaghi A et al. Short electron bunch generation using single-cycle ultrafast electron guns[J]. Physical Review Accelerators and Beams, 19, 081302(2016).
[56] Curry E, Fabbri S, Musumeci P et al. THz-driven zero-slippage IFEL scheme for phase space manipulation[J]. New Journal of Physics, 18, 113045(2016).
[57] Lemery F, Floettmann K, Piot P et al. Synchronous acceleration with tapered dielectric-lined waveguides[J]. Physical Review Accelerators and Beams, 21, 051302(2018).
[58] Zhang D F, Zeng Y S, Fakhari M et al. Long range terahertz driven electron acceleration using phase shifters[J]. Applied Physics Reviews, 9, 031407(2022).
[59] Tang H, Zhao L R, Zhu P F et al. Stable and scalable multistage terahertz-driven particle accelerator[J]. Physical Review Letters, 127, 074801(2021).
[60] Tian Y, Liu J S, Bai Y F et al. Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation[J]. Nature Photonics, 11, 242-246(2017).
[61] Zeng Y S, Zhou C L, Song L W et al. Guiding and emission of milijoule single-cycle THz pulse from laser-driven wire-like targets[J]. Optics Express, 28, 15258-15267(2020).
[62] Zhang D D, Bai Y F, Zeng Y S et al. Towards high-repetition-rate intense terahertz source with metal wire-based plasma[J]. IEEE Photonics Journal, 14, 5910605(2022).
[64] Lin X E. Photonic band gap fiber accelerator[J]. Physical Review Special Topics-Accelerators and Beams, 4, 051301(2001).
[65] Wei Y, Ibison M, Xia G et al. Dual-grating dielectric accelerators driven by a pulse-front-tilted laser[J]. Applied Optics, 56, 8201-8206(2017).
[66] Leedle K, Pease F, Byer R L et al. Laser acceleration and deflection of 96.3 keV electrons with a silicon dielectric structure[J]. Optica, 2, 158-161(2015).
[67] Deng H, Leedle K J, Miao Y et al. Gallium oxide for high-power optical applications[J]. Advanced Optical Materials, 8, 1901522(2020).
[68] Chlouba T, Shiloh R, Forsberg P et al. Diamond-based dielectric laser acceleration[J]. Optics Express, 30, 505-510(2021).
[70] Wootton K P, Wu Z R, Cowan B M et al. Demonstration of acceleration of relativistic electrons at a dielectric microstructure using femtosecond laser pulses[J]. Optics Letters, 41, 2696-2699(2016).
[71] Cesar D, Maxson J, Shen X et al. Enhanced energy gain in a dielectric laser accelerator using a tilted pulse front laser[J]. Optics Express, 26, 29216-29224(2018).
[72] Leedle K J, Ceballos A, Deng H Y et al. Dielectric laser acceleration of sub-100 keV electrons with silicon dual pillar grating structures[J]. Optics Letters, 40, 4344-4347(2015).
[73] Yousefi P, Schönenberger N, McNeur J et al. Dielectric laser electron acceleration in a dual pillar grating with a distributed Bragg reflector[J]. Optics Letters, 44, 1520-1523(2019).
[74] McNeur J, Kozák M, Schönenberger N et al. Elements of a dielectric laser accelerator[J]. Optica, 5, 687-690(2018).
[75] Fishman T, Haeusler U, Dahan R et al. Imaging the field inside nanophotonic accelerators[J]. Nature Communications, 14, 3687(2023).
[76] Barwick B, Flannigan D J, Zewail A H. Photon-induced near-field electron microscopy[J]. Nature, 462, 902-906(2009).
[77] de Abajo F J G, Asenjo-Garcia A, Kociak M. Multiphoton absorption and emission by interaction of swift electrons with evanescent light fields[J]. Nano Letters, 10, 1859-1863(2010).
[78] Park S T, Lin M, Zewail A H. Photon-induced near-field electron microscopy (PINEM): theoretical and experimental[J]. New Journal of Physics, 12, 123028(2010).
[79] Adiv Y, Wang K P, Dahan R et al. Quantum nature of dielectric laser accelerators[J]. Physical Review X, 11, 041042(2021).
[80] Dahan R, Gorlach A, Haeusler U et al. Imprinting the quantum statistics of photons on free electrons[J]. Science, 373, eabj7128(2021).
[81] Reinhardt O, Kaminer I. Theory of shaping electron wavepackets with light[J]. ACS Photonics, 7, 2859-2870(2020).
[82] Zhao L R, Tang H, Lu C et al. Femtosecond relativistic electron beam with reduced timing jitter from THz driven beam compression[J]. Physical Review Letters, 124, 054802(2020).
[83] Panofsky W K H, Wenzel W A. Some considerations concerning the transverse deflection of charged particles in radio-frequency fields[J]. Review of Scientific Instruments, 27, 967(1956).
[84] Zhou C L, Bai Y F, Song L W et al. Direct mapping of attosecond electron dynamics[J]. Nature Photonics, 15, 216-221(2021).
[85] Kozák M, McNeur J, Leedle K J et al. Optical gating and streaking of free electrons with sub-optical cycle precision[J]. Nature Communications, 8, 14342(2017).
[86] Zhao L R, Wang Z, Tang H et al. Terahertz oscilloscope for recording time information of ultrashort electron beams[J]. Physical Review Letters, 122, 144801(2019).
[87] Aspden H. Earnshaw’s theorem[J]. Nature, 319, 8(1986).
[88] Niedermayer U, Egenolf T, Boine-Frankenheim O et al. Alternating-phase focusing for dielectric-laser acceleration[J]. Physical Review Letters, 121, 214801(2018).
[89] Matlis N H, Ahr F, Calendron A L et al. Acceleration of electrons in THz driven structures for AXSIS[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment, 909, 27-32(2018).
Get Citation
Copy Citation Text
Yushan Zeng, Xieqiu Yu, Ye Tian. Research Advances in Integrated Electron Accelerators Driven by Spectrum Band from Terahertz to Optical Waves[J]. Chinese Journal of Lasers, 2023, 50(17): 1714008
Category: terahertz technology
Received: May. 4, 2023
Accepted: Jul. 18, 2023
Published Online: Sep. 1, 2023
The Author Email: Tian Ye (tianye@siom.ac.cn)