Chinese Journal of Lasers, Volume. 50, Issue 17, 1714008(2023)

Research Advances in Integrated Electron Accelerators Driven by Spectrum Band from Terahertz to Optical Waves

Yushan Zeng1, Xieqiu Yu1,2, and Ye Tian1,2、*
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai 201800,China
  • 2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China
  • show less
    References(90)

    [1] Anderle D P, Bertone V, Cao X et al. Electron-ion collider in China[J]. Frontiers of Physics, 16, 64701(2021).

    [2] Dutta B, Ghosh S, Gurrola A et al. Probing an MeV-scale scalar boson in association with a TeV-scale top-quark partner at the LHC[J]. Journal of High Energy Physics, 2023, 164(2023).

    [3] Bostedt C, Boutet S, Fritz D M et al. Linac Coherent Light Source: the first five years[J]. Reviews of Modern Physics, 88, 015007(2016).

    [4] Decking W, Abeghyan S, Abramian P et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator[J]. Nature Photonics, 14, 391-397(2020).

    [5] Beck J A. Process variation in electron beam sterilization[J]. Radiation Physics and Chemistry, 81, 1236-1240(2012).

    [6] Veronesi U, Orecchia R, Maisonneuve P et al. Intraoperative radiotherapy versus external radiotherapy for early breast cancer (ELIOT): a randomised controlled equivalence trial[J]. The Lancet Oncology, 14, 1269-1277(2013).

    [7] Spitz D R, Buettner G R, Petronek M S et al. An integrated physico-chemical approach for explaining the differential impact of FLASH versus conventional dose rate irradiation on cancer and normal tissue responses[J]. Radiotherapy and Oncology, 139, 23-27(2019).

    [8] Yang J, Zhu X L, Wolf T J A et al. Imaging CF3I conical intersection and photodissociation dynamics with ultrafast electron diffraction[J]. Science, 361, 64-67(2018).

    [9] Horstmann J G, Böckmann H, Wit B et al. Coherent control of a surface structural phase transition[J]. Nature, 583, 232-236(2020).

    [10] Kilpatrick W D. Criterion for vacuum sparking designed to include both RF and DC[J]. Review of Scientific Instruments, 28, 824-826(1957).

    [11] Malka V, Faure J, Gauduel Y A et al. Principles and applications of compact laser-plasma accelerators[J]. Nature Physics, 4, 447-453(2008).

    [12] Leemans W P, Gonsalves A J, Mao H S et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime[J]. Physical Review Letters, 113, 245002(2014).

    [13] Guénot D, Gustas D, Vernier A et al. Relativistic electron beams driven by kHz single-cycle light pulses[J]. Nature Photonics, 11, 293-296(2017).

    [14] Nanni E A, Huang W R, Hong K H et al. Terahertz-driven linear electron acceleration[J]. Nature Communications, 6, 8486(2015).

    [15] Hibberd M T, Healy A L, Lake D S et al. Acceleration of relativistic beams using laser-generated terahertz pulses[J]. Nature Photonics, 14, 755-759(2020).

    [16] Xu H X, Yan L X, Du Y C et al. Cascaded high-gradient terahertz-driven acceleration of relativistic electron beams[J]. Nature Photonics, 15, 426-430(2021).

    [17] Breuer J, Hommelhoff P. Laser-based acceleration of nonrelativistic electrons at a dielectric structure[J]. Physical Review Letters, 111, 134803(2013).

    [18] Peralta E A, Soong K, England R J et al. Demonstration of electron acceleration in a laser-driven dielectric microstructure[J]. Nature, 503, 91-94(2013).

    [19] Sapra N V, Yang K Y, Vercruysse D et al. On-chip integrated laser-driven particle accelerator[J]. Science, 367, 79-83(2020).

    [20] Maier A R, Delbos N M, Eichner T et al. Decoding sources of energy variability in a laser-plasma accelerator[J]. Physical Review X, 10, 031039(2020).

    [21] Wang W T, Feng K, Ke L T et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator[J]. Nature, 595, 516-520(2021).

    [22] Labat M, Cabadağ J C, Ghaith A et al. Seeded free-electron laser driven by a compact laser plasma accelerator[J]. Nature Photonics, 17, 150-156(2023).

    [23] Shimoda K. Proposal for an electron accelerator using an optical maser[J]. Applied Optics, 1, 33-35(1962).

    [24] Palmer R B. Interaction of relativistic particles and free electromagnetic waves in the presence of a static helical magnet[J]. Journal of Applied Physics, 43, 3014-3023(1972).

    [25] van Steenbergen A, Gallardo J, Sandweiss J et al. Observation of energy gain at the BNL inverse free-electron-laser accelerator[J]. Physical Review Letters, 77, 2690-2693(1996).

    [26] Piestrup M A, Rothbart G B, Fleming R N et al. Momentum modulation of a free electron beam with a laser[J]. Journal of Applied Physics, 46, 132-137(1975).

    [27] Takeda Y, Matsui I. Laser linac with grating[J]. Nuclear Instruments and Methods, 62, 306-310(1968).

    [28] Mizuno K, Pae J, Nozokido T et al. Experimental evidence of the inverse Smith-Purcell effect[J]. Nature, 328, 45-47(1987).

    [29] Huang W R, Fallahi A, Wu X J et al. Terahertz-driven,all-optical electron gun[J]. Optica, 3, 1209-1212(2016).

    [30] Zhang D F, Fallahi A, Hemmer M et al. Segmented terahertz electron accelerator and manipulator (STEAM)[J]. Nature Photonics, 12, 336-342(2018).

    [31] Zhang D F, Fakhari M, Cankaya H et al. Cascaded multicycle terahertz-driven ultrafast electron acceleration and manipulation[J]. Physical Review X, 10, 011067(2020).

    [32] Curry E, Fabbri S, Maxson J et al. Meter-scale terahertz-driven acceleration of a relativistic beam[J]. Physical Review Letters, 120, 094801(2018).

    [33] Zhang D F, Fallahi A, Hemmer M et al. Femtosecond phase control in high-field terahertz-driven ultrafast electron sources[J]. Optica, 6, 872-877(2019).

    [34] Snively E C, Othman M A K, Kozina M et al. Femtosecond compression dynamics and timing jitter suppression in a THz-driven electron bunch compressor[J]. Physical Review Letters, 124, 054801(2020).

    [35] Kealhofer C, Schneider W, Ehberger D et al. All-optical control and metrology of electron pulses[J]. Science, 352, 429-433(2016).

    [36] Zhao L R, Wang Z, Lu C et al. Terahertz streaking of few-femtosecond relativistic electron beams[J]. Physical Review X, 8, 021061(2018).

    [37] Li R K, Hoffmann M C, Nanni E A et al. Terahertz-based subfemtosecond metrology of relativistic electron beams[J]. Physical Review Accelerators and Beams, 22, 012803(2019).

    [38] Breuer J, Graf R, Apolonski A et al. Dielectric laser acceleration of nonrelativistic electrons at a single fused silica grating structure: experimental part[J]. Physical Review Special Topics-Accelerators and Beams, 17, 021301(2014).

    [39] Wu Z R, England R J, Ng C K et al. Coupling power into accelerating mode of a three-dimensional silicon woodpile photonic band-gap waveguide[J]. Physical Review Special Topics-Accelerators and Beams, 17, 081301(2014).

    [40] Black D S, Zhao Z X, Leedle K J et al. Operating modes of dual-grating dielectric laser accelerators[J]. Physical Review Accelerators and Beams, 23, 114001(2020).

    [41] Hirano T, Urbanek K E, Ceballos A C et al. A compact electron source for the dielectric laser accelerator[J]. Applied Physics Letters, 116, 161106(2020).

    [42] Cesar D, Custodio S, Maxson J et al. High-field nonlinear optical response and phase control in a dielectric laser accelerator[J]. Communications Physics, 1, 46(2018).

    [43] Shiloh R, Illmer J, Chlouba T et al. Electron phase-space control in photonic chip-based particle acceleration[J]. Nature, 597, 498-502(2021).

    [44] Joshi C. The Los Alamos Laser Acceleration of Particles Workshop and beginning of the advanced accelerator concepts field[J]. AIP Conference Proceedings, 1507, 61-66(2012).

    [45] England R J, Noble R J, Bane K et al. Dielectric laser accelerators[J]. Reviews of Modern Physics, 86, 1337-1389(2014).

    [46] Hebling J, Almasi G, Kozma I et al. Velocity matching by pulse front tilting for large area THz-pulse generation[J]. Optics Express, 10, 1161-1166(2002).

    [47] Zhang B L, Ma Z Z, Ma J L et al. 1.4-mJ high energy terahertz radiation from lithium niobates[J]. Laser & Photonics Reviews, 15, 2000295(2021).

    [48] Wu X J, Kong D Y, Hao S B et al. Generation of 13.9-mJ terahertz radiation from lithium niobate materials[J]. Advanced Materials, 35, 2208947(2023).

    [49] Zhang L L, Wang W M, Wu T et al. Strong terahertz radiation from a liquid-water line[J]. Physical Review Applied, 12, 014005(2019).

    [50] Fülöp J A, Tzortzakis S, Kampfrath T. Laser-driven strong-field terahertz sources[J]. Advanced Optical Materials, 8, 1900681(2020).

    [51] Koulouklidis A D, Gollner C, Shumakova V et al. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments[J]. Nature Communications, 11, 292(2020).

    [52] Zhang D D, Zeng Y S, Bai Y F et al. Coherent surface plasmon polariton amplification via free-electron pumping[J]. Nature, 611, 55-60(2022).

    [53] Othman M A K, Hoffmann M C, Kozina M E et al. Parallel-plate waveguides for terahertz-driven MeV electron bunch compression[J]. Optics Express, 27, 23791-23800(2019).

    [54] Liao G Q, Liu H, Scott G G et al. Towards terawatt-scale spectrally tunable terahertz pulses via relativistic laser-foil interactions[J]. Physical Review X, 10, 031062(2020).

    [55] Fallahi A, Fakhari M, Yahaghi A et al. Short electron bunch generation using single-cycle ultrafast electron guns[J]. Physical Review Accelerators and Beams, 19, 081302(2016).

    [56] Curry E, Fabbri S, Musumeci P et al. THz-driven zero-slippage IFEL scheme for phase space manipulation[J]. New Journal of Physics, 18, 113045(2016).

    [57] Lemery F, Floettmann K, Piot P et al. Synchronous acceleration with tapered dielectric-lined waveguides[J]. Physical Review Accelerators and Beams, 21, 051302(2018).

    [58] Zhang D F, Zeng Y S, Fakhari M et al. Long range terahertz driven electron acceleration using phase shifters[J]. Applied Physics Reviews, 9, 031407(2022).

    [59] Tang H, Zhao L R, Zhu P F et al. Stable and scalable multistage terahertz-driven particle accelerator[J]. Physical Review Letters, 127, 074801(2021).

    [60] Tian Y, Liu J S, Bai Y F et al. Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation[J]. Nature Photonics, 11, 242-246(2017).

    [61] Zeng Y S, Zhou C L, Song L W et al. Guiding and emission of milijoule single-cycle THz pulse from laser-driven wire-like targets[J]. Optics Express, 28, 15258-15267(2020).

    [62] Zhang D D, Bai Y F, Zeng Y S et al. Towards high-repetition-rate intense terahertz source with metal wire-based plasma[J]. IEEE Photonics Journal, 14, 5910605(2022).

    [64] Lin X E. Photonic band gap fiber accelerator[J]. Physical Review Special Topics-Accelerators and Beams, 4, 051301(2001).

    [65] Wei Y, Ibison M, Xia G et al. Dual-grating dielectric accelerators driven by a pulse-front-tilted laser[J]. Applied Optics, 56, 8201-8206(2017).

    [66] Leedle K, Pease F, Byer R L et al. Laser acceleration and deflection of 96.3 keV electrons with a silicon dielectric structure[J]. Optica, 2, 158-161(2015).

    [67] Deng H, Leedle K J, Miao Y et al. Gallium oxide for high-power optical applications[J]. Advanced Optical Materials, 8, 1901522(2020).

    [68] Chlouba T, Shiloh R, Forsberg P et al. Diamond-based dielectric laser acceleration[J]. Optics Express, 30, 505-510(2021).

    [70] Wootton K P, Wu Z R, Cowan B M et al. Demonstration of acceleration of relativistic electrons at a dielectric microstructure using femtosecond laser pulses[J]. Optics Letters, 41, 2696-2699(2016).

    [71] Cesar D, Maxson J, Shen X et al. Enhanced energy gain in a dielectric laser accelerator using a tilted pulse front laser[J]. Optics Express, 26, 29216-29224(2018).

    [72] Leedle K J, Ceballos A, Deng H Y et al. Dielectric laser acceleration of sub-100 keV electrons with silicon dual pillar grating structures[J]. Optics Letters, 40, 4344-4347(2015).

    [73] Yousefi P, Schönenberger N, McNeur J et al. Dielectric laser electron acceleration in a dual pillar grating with a distributed Bragg reflector[J]. Optics Letters, 44, 1520-1523(2019).

    [74] McNeur J, Kozák M, Schönenberger N et al. Elements of a dielectric laser accelerator[J]. Optica, 5, 687-690(2018).

    [75] Fishman T, Haeusler U, Dahan R et al. Imaging the field inside nanophotonic accelerators[J]. Nature Communications, 14, 3687(2023).

    [76] Barwick B, Flannigan D J, Zewail A H. Photon-induced near-field electron microscopy[J]. Nature, 462, 902-906(2009).

    [77] de Abajo F J G, Asenjo-Garcia A, Kociak M. Multiphoton absorption and emission by interaction of swift electrons with evanescent light fields[J]. Nano Letters, 10, 1859-1863(2010).

    [78] Park S T, Lin M, Zewail A H. Photon-induced near-field electron microscopy (PINEM): theoretical and experimental[J]. New Journal of Physics, 12, 123028(2010).

    [79] Adiv Y, Wang K P, Dahan R et al. Quantum nature of dielectric laser accelerators[J]. Physical Review X, 11, 041042(2021).

    [80] Dahan R, Gorlach A, Haeusler U et al. Imprinting the quantum statistics of photons on free electrons[J]. Science, 373, eabj7128(2021).

    [81] Reinhardt O, Kaminer I. Theory of shaping electron wavepackets with light[J]. ACS Photonics, 7, 2859-2870(2020).

    [82] Zhao L R, Tang H, Lu C et al. Femtosecond relativistic electron beam with reduced timing jitter from THz driven beam compression[J]. Physical Review Letters, 124, 054802(2020).

    [83] Panofsky W K H, Wenzel W A. Some considerations concerning the transverse deflection of charged particles in radio-frequency fields[J]. Review of Scientific Instruments, 27, 967(1956).

    [84] Zhou C L, Bai Y F, Song L W et al. Direct mapping of attosecond electron dynamics[J]. Nature Photonics, 15, 216-221(2021).

    [85] Kozák M, McNeur J, Leedle K J et al. Optical gating and streaking of free electrons with sub-optical cycle precision[J]. Nature Communications, 8, 14342(2017).

    [86] Zhao L R, Wang Z, Tang H et al. Terahertz oscilloscope for recording time information of ultrashort electron beams[J]. Physical Review Letters, 122, 144801(2019).

    [87] Aspden H. Earnshaw’s theorem[J]. Nature, 319, 8(1986).

    [88] Niedermayer U, Egenolf T, Boine-Frankenheim O et al. Alternating-phase focusing for dielectric-laser acceleration[J]. Physical Review Letters, 121, 214801(2018).

    [89] Matlis N H, Ahr F, Calendron A L et al. Acceleration of electrons in THz driven structures for AXSIS[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment, 909, 27-32(2018).

    Tools

    Get Citation

    Copy Citation Text

    Yushan Zeng, Xieqiu Yu, Ye Tian. Research Advances in Integrated Electron Accelerators Driven by Spectrum Band from Terahertz to Optical Waves[J]. Chinese Journal of Lasers, 2023, 50(17): 1714008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: terahertz technology

    Received: May. 4, 2023

    Accepted: Jul. 18, 2023

    Published Online: Sep. 1, 2023

    The Author Email: Tian Ye (tianye@siom.ac.cn)

    DOI:10.3788/CJL230779

    Topics