Journal of Infrared and Millimeter Waves, Volume. 43, Issue 3, 293(2024)
Characterization of visible-mid-infrared supercontinuum spectrum based on sandwiched silicon nitride waveguide
[2] MOSS D J, MORANDOTTI R, GAETA A L et al. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics[J]. Nature photonics, 7, 597-607(2013).
[3] DOMENEGUETTI R R, ZHAO Yun, JI Xing-Chen et al. Parametric sideband generation in CMOS-compatible oscillators from visible to telecom wavelengths[J]. Optica, 8, 316-322(2021).
[4] BRISTOW A D, ROTENBERG N, VAN DRIEL H M. Two-photon absorption and Kerr coefficients of silicon for 850–2200nm[J]. Applied physics letters, 90(2007).
[6] HALIR R, OKAWACHI Y, LEVY J S et al. Ultrabroadband supercontinuum generation in a CMOS-compatible platform[J]. Optics letters, 37, 1685-1687(2012).
[7] PORCEL M A G, SCHEPERS F, EPPING J P et al. Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths[J]. Optics express, 25, 1542-1554(2017).
[8] GUO Hai-Run, WENG Wen-Le, LIU Jun-Qiu et al. Nanophotonic supercontinuum-based mid-infrared dual-comb spectroscopy[J]. Optica, 7, 1181-1188(2020).
[9] FANG Yu-Xi, BAO Chang-Jing, WANG Zhi et al. Multiple coherent dispersive waves generation in silicon nitride slot waveguide[J]. Applied Physics Letters, 120(2022).
[10] SINGH N, HUDSON D D, YU Y et al. Midinfrared supercontinuum generation from 2 to 6 μm in a silicon nanowire[J]. Optica, 2, 797-802(2015).
[11] ZOU Yi, CHAKRAVARTY S, CHUNG Chi-Jui et al. Mid-infrared silicon photonic waveguides and devices[J]. Photonics Research, 6, 254-276(2018).
[12] HALIR R, OKAWACHI Y, LEVY J S et al. Ultrabroadband supercontinuum generation in a CMOS-compatible platform[J]. Optics letters, 37, 1685-1687(2012).
[13] YIN Liang-Hong, LIN Qiang, AGRAWAL G P. Soliton fission and supercontinuum generation in silicon waveguides[J]. Optics letters, 32, 391-393(2007).
[14] LEO F, GORZA S P, SAFIOUI J et al. Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength[J]. Optics letters, 39, 3623-3626(2014).
[16] SALZBERG C D, VILLA J J. Infrared refractive indexes of silicon germanium and modified selenium glass[J]. JOSA, 47, 244-246(1957).
[18] BRUNER A, EGER D, ORON M B et al. Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate[J]. Optics letters, 28, 194-196(2003).
[19] CIRET C, GORZA S P. Generation of ultra-broadband coherent supercontinua in tapered and dispersion-managed silicon nanophotonic waveguides[J]. JOSA B, 34, 1156-1162(2017).
[20] EPPING J P, HELLWIG T, HOEKMAN M et al. On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth[J]. Optics express, 23, 19596-19604(2015).
[21] FANG Yu-Xi, BAO Chang-Jing, WANG Zhi et al. Soliton-Induced Mid-Infrared Dispersive Wave in Horizontally-Slotted Si₃N₄ Waveguide[J]. IEEE Access, 10, 62322-62329(2022).
Get Citation
Copy Citation Text
Jia-Hao SUN, Ru-Min CHENG, Kai GUO, Jin-De YIN, Du-An QING, Ling LI, Pei-Guang YAN. Characterization of visible-mid-infrared supercontinuum spectrum based on sandwiched silicon nitride waveguide[J]. Journal of Infrared and Millimeter Waves, 2024, 43(3): 293
Category: Research Articles
Received: Sep. 13, 2023
Accepted: --
Published Online: Apr. 29, 2024
The Author Email: Kai GUO (guokai07203@hotmail.com)