Laser & Optoelectronics Progress, Volume. 62, Issue 4, 0400002(2025)

Review of Tissue Phantoms for Biomedical Optical Applications

Zhonghong Yang1,2,3、*, Liyuan He3, Yingchao Wu2, Hanwen Zhang1,2, Yuewen Yu1,2, Dongjie Zhao1,2,3, Xinyu Li1,2, Rong Liu1,2, Wenliang Chen1,2, and Chenxi Li1,2
Author Affiliations
  • 1State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
  • 2School of Precision Instrument and Optic Electronic Engineering, Tianjin University, Tianjin 300072, China
  • 3School of Medicine, Tianjin University, Tianjin 300072, China
  • show less
    Figures & Tables(7)
    • Table 1. Commonly used tissue optical parameters for optical phantoms

      View table

      Table 1. Commonly used tissue optical parameters for optical phantoms

      Tissue typeWavelength /nmAbsorption coefficient /mm-1Reduced scattering coefficient /mm-1
      Skin64003.76±0.3571.80±9.4
      5001.19±0.1632.50±4.2
      6000.69±0.1321.80±3.0
      7000.48±0.1116.70±2.3
      8000.43±0.1114.00±1.9
      9000.33±0.0215.70±2.1
      10000.27±0.0316.80±2.8
      Human epithelial tissue740012.96±1.44106.20±11.0
      5007.07±0.6670.60±7.0
      6003.08±0.7651.40±5.0
      7002.58±0.7742.70±4.1
      8001.71±0.5936.80±3.6
      9000.80±0.4533.60±3.5
      10000.45±0.2830.60±3.4
      Human dermal tissue74009.13±1.1876.80±11.0
      5003.36±0.4346.20±4.6
      6001.72±0.2432.20±2.9
      7001.53±0.2526.40±2.5
      8001.22±0.2122.50±2.3
      9000.83±0.1720.10±2.3
      10000.79±0.1818.60±2.2
      Human subcutaneous tissue84002.26±0.2413.40±2.8
      5001.49±0.0613.80±4.0
      6001.18±0.0213.40±4.7
      7001.11±0.0512.20±4.4
      8001.07±0.1111.60±4.6
      9001.07±0.0710.00±3.4
      10001.06±0.069.39±3.3
    • Table 2. Commonly used matrix materials of optical phantoms

      View table

      Table 2. Commonly used matrix materials of optical phantoms

      Phantom matrix materialPermanentSolid/liquid/flexibleYoung modulusHardness /HABiologically compatibleOrganic chemical compatibleIndex of refractionRecommended forming method
      Aqueous suspension1NoLiquidYesYes1.34Mould filling
      Gelatin/agar matrix9-10NoFlexible0.1‒10.0 MPa0‒100YesYes1.35Moulding
      Polyacrylamide gel11NoFlexible1‒100 kPa20‒90YesYes1.35Moulding
      Polyester or epoxy resin12-13YesSolid2‒15 GPa50‒90NoNo1.54Moulding, spin-coating, additive manufacturing
      RTV silicone14YesFlexible0.01‒10.00 MPa0‒80NoNo1.40Moulding, spin-coating, additive manufacturing
    • Table 3. Commonly used scattering materials of tissue optical phantoms

      View table

      Table 3. Commonly used scattering materials of tissue optical phantoms

      Scatterer materialPermanentParticle sizeIndex of refractionRecommended matrix materials
      Lipids microspheres15No10‒500 nm1.45Aqueous, gelatin/agar matrix
      Polymer microspheres16Yes50 nm‒100 μm1.59Aqueous, resin, RTV silicon
      TiO2 /Al2O3 powdersYes20‒70 nm2.4‒2.9Resin, RTV silicon
    • Table 4. Commonly used absorbing materials of tissue optical phantoms

      View table

      Table 4. Commonly used absorbing materials of tissue optical phantoms

      Absorbing materialStabilityRecommended matrix material
      Whole blood18-19Hours to daysAqueous, gelatin matrix
      India ink20-22Days to weeksAqueous, agar matrix, resin, RTV silicon
      Molecular dyes23-24Days to weeksResin, RTV silicon
    • Table 5. Main characteristics and applications of tissue optical phantom

      View table

      Table 5. Main characteristics and applications of tissue optical phantom

      Characteristic typeMajor parameterPhantom application
      Optical

      Absorption coefficient

      Scattering coefficient

      Refractive index

      Fluorescence property

      Tissue spectral imaging

      Diffuse optical tomography

      Coherence optical tomography

      Acoustic

      Speed of sound

      Impedance

      Attenuation

      Photoacoustic imaging
      Thermal

      Capacity

      Conductivity

      Expansion

      Thermostability

      Photoacoustic imaging
      Mechanical

      Stiffness

      Modulus

      Density

      Photoacoustic imaging

      Wearable device detection

      Geometric structure

      Simpe block

      Embedded tube/channel

      Thin-layer

      Shape of target tissue area

      Diffuse optical tomography

      Coherence optical tomography

      Photoacoustic imaging

      Wearable device detection

      Surface texture

      Smoothness

      Roughness

      Skin-like texture structure

      Coherence optical tomography
      Dynamic

      Volume change

      Liquid flow

      Temperature variation

      Photoacoustic imaging

      Wearable device detection

      Stable/repeatable

      Consistent properties over time

      Repeatable manufacturing over multiple batches

      Reusability

      Almost all phantom applications
    • Table 6. Commonly used fabrication methods for phantoms

      View table

      Table 6. Commonly used fabrication methods for phantoms

      Phantom fabrication methodSuitable tissueFeatureEquipment required
      Casting moldingMuscle, bone, skin, blood vesselEasy to make, can not support complex structuresProper molds
      Spin-coating methodSkin, epithelial tissue, dermal tissue, corneaSuitable for use in making thin layer structureSpinner
      3D-pringting methodAlmost all kinds of human tissuesPhantoms with high complexity, limitations in the use of materials3D printer
    • Table 7. Commonly-used 3D process methods for phantoms

      View table

      Table 7. Commonly-used 3D process methods for phantoms

      3D printing typeSubtypeMaterialApplicationAdvantageLimitation
      Material extrusion35-37

      Fused deposition modeling (FDM)

      3D bioprinting

      3D printing of architecture

      Plastic, metal, food materials, organic or biological materialsElectrical shell, geometric shape matching test, casting modelLow cost, wide range of materialsLow material performance (strength, durability), low dimensional accuracy
      Reductive photopolymerization38-41

      Stereo lithography appearance (SLA)

      Liquid crystal display (LCD)

      Digital light processing (DLP)

      Light-cured resinFine parts model, jewelry design and manufacturing, dental model manufacturingHigh dimensional accuracy, complex geometries manufacturabilitySingle printing material
      Powder bed fusion42-43

      Selective laser sintering (SLS)

      Laser powder bed fusion (LPBF)

      Electron beam melting (EBM)

      Plastic powder, metal powder, ceramic powderFunctional component manufacturing, complex pipeline modelGood mechanical properties, complex geometries manufacturabilitySlow manufacturing speed
      Material jetting44-45

      Continuous material jetting (CMJ)

      Nano particle jetting (NPJ)

      Photosensitive resin, waxFull color model manufacturing, medical model manufacturingHigh surface smoothness, excellent visual appearance, simultaneous printing of multiple materialsInapplicable for producing precision mechanical parts, higher cost compared to other printing technologies for visual effects
    Tools

    Get Citation

    Copy Citation Text

    Zhonghong Yang, Liyuan He, Yingchao Wu, Hanwen Zhang, Yuewen Yu, Dongjie Zhao, Xinyu Li, Rong Liu, Wenliang Chen, Chenxi Li. Review of Tissue Phantoms for Biomedical Optical Applications[J]. Laser & Optoelectronics Progress, 2025, 62(4): 0400002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jun. 6, 2024

    Accepted: Jul. 9, 2024

    Published Online: Feb. 18, 2025

    The Author Email:

    DOI:10.3788/LOP241443

    CSTR:32186.14.LOP241443

    Topics