Chinese Journal of Lasers, Volume. 24, Issue 3, 221(1997)
Numerical Study of the 3-slot CW HF Chemical Laser
[2] [2] L. E. Wilson, D. L. Hook. Deuterium Fluoride CW chemical lasers. AIAA-76344
[3] [3] G. W. Buter et al.. Flow model of the HF laser. AIAA-86-1401
[4] [4] W. L. Hendricks, R. R. Mikatarian, B. J. Gross et al.. Soltuions of the full navier-Stokes equations for reacting three-dimentions chemical laser cavity and diffuser flow fields. AIAA-81-1133
[5] [5] N. L. Rapagnani. The effect of heat release in a chemical laser cavity. AIAA-84-1619
[6] [6] Zhou Xuehua, Chen Liyin, Chen Haitao. Characteristics of a CW HF chemical laser calculation from a simplified two-dimentional model. Laser and Partical Beam, 1986, 4(2): 167~181
[7] [7] Harold Mirels. Translational and rotation nonequilibrium effects in CW chemical lasers. SPIE-GLC, 1988, 1031: 248~258
[8] [8] L. H. Sentman et al.. A comparative study of CW HF chemical laser Febry-Perot and stable resonator performance. Proceeding of the International Conference on Lasers ’85, 1985, December
[9] [9] Yu. E. Egorov, M. L. Shur. Navier-Stokes simulation of supersonic combution in CW chemical laser with account of upwind influence of cavity process on nozzle array flow. Numer. Methods in Thermal Problemes, 1991, 7(2): 1185~1195
[10] [10] Y. Egorov, A. Kuznetsov, M. Shur et al.. Navier-Stokes modeling of 2D and 3D reacttive nozzle flow on the basis of compressibility scaling method. S. Wagner, E. H. Hirschel et al.. Computational Fluid Dynamics ’94, Stuttgart, Germany, 1994. 815~821
[11] [11] M. Streletes, M. Shur. Compressibility scaling method for arbitrary mach number steady-state navier-Stoke scalculates. U. S. S. R. Comput. Maths, 1988, 1: 165~173
[12] [12] Y. Lapin, M. Strelets, M. Shur. Numerical simulation of cavity processes in HF CW chemical laser. Phys. Goren. I. Vzryva, 1982, 5: 89~96
Get Citation
Copy Citation Text
[in Chinese], [in Chinese], [in Chinese]. Numerical Study of the 3-slot CW HF Chemical Laser[J]. Chinese Journal of Lasers, 1997, 24(3): 221