Laser & Optoelectronics Progress, Volume. 60, Issue 12, 1210016(2023)

Hyperspectral Image Classification Based on Automatic Threshold Attribute Profiles and Spatial-Spectral Encoding Union Features

Peiqi Yang* and Mingjun Wang
Author Affiliations
  • School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
  • show less
    Figures & Tables(12)
    General flow chart of hyperspectral classification
    Construction of automatic threshold attribute profiles.(a) Construction of GD and ADC; (b) construction of MSC; (c) tree filtering
    Generation of EAP
    Image data of Pavia University dataset
    Image data of Salinas dataset
    Filtered images. (a) Third filtering; (b) second filtering; (c) first filtering; (d) first PC; (e) first filtering; (f) second filtering; (g) third filtering
    Accuracy comparison results of different methods on 9 categories for Pavia University dataset
    Accuracy comparison results of different methods on 16 categories for Salinas dataset
    • Table 1. Attribute and threhold

      View table

      Table 1. Attribute and threhold

      DatasetPavia UniversitySalinas
      Area55879,93720,131561,16940224174,45732,67290,88848
      Standard deviation14,26,39,5212,22,32,42
    • Table 2. Parameter settings of different datasets

      View table

      Table 2. Parameter settings of different datasets

      DatasetλNumber of hidden layer neuronsS-SFMSAE structure
      Pavia University0.180171-100-80-9
      Salinas0.00180255-120-80-16
    • Table 3. Comparison of various methods on Pavia University

      View table

      Table 3. Comparison of various methods on Pavia University

      DatasetS-SFM SAECDA SAESVM-RFS1-D CNNCNN-PPFLBP-ELM
      OA99.2897.5997.5991.1092.2796.48
      AA99.0197.6692.9293.3096.9891.81
      Kappa99.0596.8696.9088.5389.8995.48
    • Table 4. Comparison of various methods on Salinas

      View table

      Table 4. Comparison of various methods on Salinas

      DatasetS-SFM SAECDA SAESVM-RFS1-D CNNCNN-PPFLBP-ELM
      OA98.3296.0793.1589.2894.8092.42
      AA98.9197.5696.8794.8397.7396.31
      Kappa98.1396.7892.3588.1394.1791.55
    Tools

    Get Citation

    Copy Citation Text

    Peiqi Yang, Mingjun Wang. Hyperspectral Image Classification Based on Automatic Threshold Attribute Profiles and Spatial-Spectral Encoding Union Features[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1210016

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jan. 20, 2022

    Accepted: Jun. 28, 2022

    Published Online: Jun. 5, 2023

    The Author Email: Peiqi Yang (2180321225@stu.xaut.edu.cn)

    DOI:10.3788/LOP220589

    Topics