Acta Laser Biology Sinica, Volume. 33, Issue 5, 385(2024)

Progress in Artificial Microbiol Transformation of One-carbon Compounds

LIU Jiezheng1,2,3,4,5, LIU Min2, ZHAO Guang2, and XIAN Mo1,3,4,5、*
Author Affiliations
  • 1CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
  • 2State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • 4Shandong Energy Institute, Qingdao 266101, China
  • 5Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
  • show less
    References(108)

    [1] [1] LONG F, LIU W, JIANG X, et al. State-of-the-art technologies for biofuel production from triglycerides: a review[J]. Renewable and Sustainable Energy Reviews, 2021, 148(12): 111269.

    [3] [3] WANG Q, HE H, XIONG W, et al. Editorial: synthetic metabolism for the third-generation (3G) biorefineries[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1214729.

    [4] [4] WHITAKER W B, SANDOVAL N R, BENNETT R K, et al. Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization[J]. Current Opinion in Biotechnology, 2015, 33: 165-175.

    [5] [5] ANTONOVSKY N, GLEIZER S, NOOR E, et al. Sugar synthesis from CO2 in Escherichia coli[J]. Cell, 2016, 166(1): 115-125.

    [6] [6] GLEIZER S, BEN-NISSAN R, BAR-ON Y M, et al. Conversion of Escherichia coli to generate all biomass carbon from CO2[J]. Cell, 2019, 179(6): 1255-1263.e12.

    [7] [7] GASSLER T, SAUER M, GASSER B, et al. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2[J]. Nature Biotechnology, 2020,38(2): 210-216.

    [8] [8] CLAASSENS N J, BORDANABA-FLORIT G, COTTON C A R, et al. Replacing the Calvin cycle with the reductive glycine pathway in Cupriavidus necator[J]. Metabolic Engineering, 2020,62: 30-41.

    [9] [9] KIM S, LINDNER S N, ASLAN S, et al. Growth of E. coli on formate and methanol via the reductive glycine pathway[J]. Nature Chemical Biology, 2020, 16(5): 538-545.

    [10] [10] YISHAI O, BOUZON M, DRING V, et al. In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli[J]. ACS Synthetic Biology, 2018, 7(9): 2023-2028.

    [11] [11] GONZALEZ DE LA CRUZ J, MACHENS F, MESSERSCHMIDT K, et al. Core catalysis of the reductive glycine pathway demonstrated in yeast[J]. ACS Synthetic Biology, 2019, 8(5): 911-917.

    [12] [12] DE SIMONE A, VICENTE C M, PEIRO C, et al. Mixing and matching methylotrophic enzymes to design a novel methanol utilization pathway in E. coli[J]. Metabolic Engineering, 2020, 61:315-325.

    [13] [13] WANG X, WANG Y, LIU J, et al. Biological conversion of methanol by evolved Escherichia coli carrying a linear methanol assimilation pathway[J]. Bioresources & Bioprocessing, 2017,4(1): 1-6.

    [14] [14] TUYISHIME P, WANG Y, FAN L, et al. Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production[J]. Metabolic Bngineering, 2018, 49: 220-231.

    [15] [15] ZHAN C, LI X, LAN G, et al. Reprogramming methanol utilization pathways to convert Saccharomyces cerevisiae to a synthetic methylotroph[J]. Nature Catalysis, 2023, 6(5): 435-450.

    [16] [16] MONTAO LPEZ J, DURAN L, AVALOS J L. Physiological limitations and opportunities in microbial metabolic engineering[J]. Nature Reviews Microbiology, 2022, 20(1): 35-48.

    [17] [17] CLOMBURG J M, CRUMBLEY A M, GONZALEZ R. Industrial biomanufacturing: the future of chemical production[J]. Science(New York, NY), 2017, 355(6320): aag0804.

    [18] [18] HWANG I Y, LEE S H, CHOI Y S, et al. Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries[J]. Journal of Microbiology and Biotechnology, 2014, 24(12): 1597-1605.

    [19] [19] HANSON R S, HANSON T E. Methanotrophic bacteria[J]. Microbiological Reviews, 1996, 60(2): 439-471.

    [20] [20] MURRELL J C, GILBERT B, MCDONALD I R. Molecular biology and regulation of methane monooxygenase[J]. Archives of Microbiology, 2000, 173(5/6): 325-332.

    [21] [21] SEMRAU J D, DISPIRITO A A, YOON S. Methanotrophs and copper[J]. FEMS Microbiology Reviews, 2010, 34(4): 496-531.

    [22] [22] ZILLY F E, ACEVEDO J P, AUGUSTYNIAK W, et al. Tuning a P450 enzyme for methane oxidation[J]. Angewandte Chemie(International ed in English), 2011, 50(12): 2720-2724.

    [23] [23] BALASUBRAMANIAN R, SMITH S M, RAWAT S, et al. Oxidation of methane by a biological dicopper centre[J]. Nature, 2010,465(7294): 115-119.

    [24] [24] KIM H J, HUH J, KWON Y W, et al. Biological conversion of methane to methanol through genetic reassembly of native catalytic domains[J]. Nature Catalysis, 2019, 2(4): 342-53.

    [25] [25] LEE H, BAEK J I, LEE J Y, et al. Syntrophic co-culture of a methanotroph and heterotroph for the efficient conversion of methane to mevalonate[J]. Metabolic Engineering, 2021, 67: 285-292.

    [26] [26] KHANONGNUCH R, MANGAYIL R, SANTALA V, et al. Batch experiments demonstrating a two-stage bacterial process coupling methanotrophic and heterotrophic bacteria for L-alkene production from methane[J]. Frontiers in Microbiology, 2022, 13: 874627.

    [27] [27] DU X L, JIANG Z, SU D S, et al. Research progress on the indirect hydrogenation of carbon dioxide to methanol[J]. ChemSus-Chem, 2016, 9(4): 322-332.

    [28] [28] NABGAN W, NABGAN B, IKRAM M, et al. Synthesis and catalytic properties of calcium oxide obtained from organic ash over a titanium nanocatalyst for biodiesel production from dairy scum[J]. Chemosphere, 2022, 290: 133296.

    [29] [29] SCHRADER J, SCHILLING M, HOLTMANN D, et al. Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria[J]. Trends in Biotechnology, 2009, 27(2): 107-115.

    [30] [30] YURIMOTO H, OKU M, SAKAI Y. Yeast methylotrophy: metabolism, gene regulation and peroxisome homeostasis[J]. International Journal of Microbiology, 2011, 2011: 101298.

    [31] [31] HOUARD S, HEINDERYCKX M, BOLLEN A. Engineering of non-conventional yeasts for efficient synthesis of macromolecules: the methylotrophic genera[J]. Biochimie, 2002, 84(11):1089-1093.

    [32] [32] DAI Z, GU H, ZHANG S, et al. Metabolic construction strategies for direct methanol utilization in Saccharomyces cerevisiae[J]. Bioresource Technology, 2017, 245(Pt B): 1407-1412.

    [33] [33] MLLER J E N, MEYER F, LITSANOV B, et al. Engineering Escherichia coli for methanol conversion[J]. Metabolic Engineering, 2015, 28: 190-201.

    [34] [34] KALLEN R G, JENCKS W P. The mechanism of the condensation of formaldehyde with tetrahydrofolic acid[J]. The Journal of Biological Chemistry, 1966, 241(24): 5851-5863.

    [35] [35] LINDN P, KEECH O, STENLUND H, et al. Reduced mitochondrial malate dehydrogenase activity has a strong effect on photo-respiratory metabolism as revealed by 13C labelling[J]. Journal of Experimental Botany, 2016, 67(10): 3123-3135.

    [36] [36] COTTON C A, CLAASSENS N J, BENITO-VAQUERIZO S, et al. Renewable methanol and formate as microbial feedstocks[J]. Current Opinion in Biotechnology, 2020, 62: 168-180.

    [37] [37] ORITA I, SAKAMOTO N, KATO N, et al. Bifunctional enzyme fusion of 3-hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase[J]. Applied Microbiology and Biotechnology, 2007, 76(2): 439-445.

    [38] [38] PFEIFENSCHNEIDER J, BRAUTASET T, WENDISCH V F. Methanol as carbon substrate in the bio-economy: metabolic engineering of aerobic methylotrophic bacteria for production of value-added chemicals[J]. Biofuels, Bioproducts and Biorefining, 2017, 11(4): 719-731.

    [39] [39] HARTNER F S, GLIEDER A. Regulation of methanol utilisation pathway genes in yeasts[J]. Microbial Cell Factories, 2006, 5:39.

    [40] [40] RUMAYER H, BUCHETICS M, GRUBER C, et al. Systems-level organization of yeast methylotrophic lifestyle[J]. BMC Biology, 2015, 13: 80.

    [41] [41] PRICE J V, CHEN L, WHITAKER W B, et al. Scaffoldless engineered enzyme assembly for enhanced methanol utilization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(45): 12691-12696.

    [42] [42] WOOLSTON B M, KING J R, REITER M, et al. Improving formaldehyde consumption drives methanol assimilation in engineered E. coli[J]. Nature Communications, 2018, 9(1): 2387.

    [43] [43] CHEN C T, CHEN F Y, BOGORAD I W, et al. Synthetic methanol auxotrophy of Escherichia coli for methanol-dependent growth and production[J]. Metabolic Engineering, 2018, 49: 257-266.

    [44] [44] GUO F, DAI Z, PENG W, et al. Metabolic engineering of Pichia pastoris for malic acid production from methanol[J]. Biotechnology and Bioengineering, 2021, 118(1): 357-371.

    [45] [45] BENNETT R K, GONZALEZ J E, WHITAKER W B, et al. Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph[J]. Metabolic Engineering, 2018, 45: 75-85.

    [46] [46] ESPINOSA M I, GONZALEZ-GARCIA R A, VALGEPEA K, et al. Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae[J]. Nature Communications, 2020,11(1): 5564.

    [47] [47] GAO J, LI Y, YU W, et al. Rescuing yeast from cell death enables overproduction of fatty acids from sole methanol[J]. Nature Metabolism, 2022, 4(7): 932-943.

    [48] [48] SOROKIN A B, KUDRIK E V, ALVAREZ L X, et al. Oxidation of methane and ethylene in water at ambient conditions[J]. Catalysis Today, 2010, 157(1): 149-154.

    [49] [49] BLANGER L, FIGUEIRA M M, BOURQUE D, et al. Production of heterologous protein by methylobacterium extorquens in high cell density fermentation[J]. FEMS Microbiology Letters, 2004, 231(2): 197-204.

    [50] [50] MAO W, YUAN Q, QI H, et al. Recent progress in metabolic engineering of microbial formate assimilation[J]. Applied Microbiology and Biotechnology, 2020, 104(16): 6905-6917.

    [51] [51] WANG W H, HIMEDA Y, MUCKERMAN J T, et al. CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction[J]. Chemical Reviews, 2015,115(23): 12936-12973.

    [52] [52] LI D, HUANG L, LIU T, et al. Electrochemical reduction of carbon dioxide to formate via nano-prism assembled CuO microspheres[J]. Chemosphere, 2019, 237: 124527.

    [53] [53] DESS P, ROVIRA-ALSINA L, SNCHEZ C, et al. Microbial electrosynthesis: towards sustainable biorefineries for production of green chemicals from CO2 emissions[J]. Biotechnology Advances, 2021, 46: 107675.

    [54] [54] YISHAI O, LINDNER S N, GONZALEZ DE LA CRUZ J, et al. The formate bio-economy[J]. Current Opinion in Chemical Biol-ogy, 2016, 35: 1-9.

    [55] [55] BAR-EVEN A. Formate assimilation: the metabolic architecture of natural and synthetic pathways[J]. Biochemistry, 2016, 55(28):3851-3863.

    [56] [56] SIEGEL J B, SMITH A L, POUST S, et al. Computational protein design enables a novel one-carbon assimilation pathway[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(12): 3704-3709.

    [57] [57] HU G, GUO L, GAO C, et al. Synergistic metabolism of glucose and formate increases the yield of short-chain organic acids in Escherichia coli[J]. ACS Synthetic Biology, 2022, 11(1):135-143.

    [58] [58] YU H, LIAO J C. A modified serine cycle in Escherichia coli coverts methanol and CO2 to two-carbon compounds[J]. Nature Communications, 2018, 9(1): 3992.

    [59] [59] SNCHEZ-ANDREA I, GUEDES I A, HORNUNG B, et al. The reductive glycine pathway allows autotrophic growth of Desulfovibrio desulfuricans[J]. Nature Communications, 2020, 11(1):5090.

    [60] [60] BAR-EVEN A, NOOR E, FLAMHOLZ A, et al. Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes[J]. Biochimica et Biophysica Acta, 2013, 1827(8/9): 1039-1047.

    [61] [61] YISHAI O, GOLDBACH L, TENENBOIM H, et al. Engineered assimilation of exogenous and endogenous formate in Escherichia coli[J]. ACS Synthetic Biology, 2017, 6(9): 1722-1731.

    [62] [62] TASHIRO Y, HIRANO S, MATSON M M, et al. Electrical-biological hybrid system for CO2 reduction[J]. Metabolic Engineering, 2018, 47: 211-218.

    [63] [63] COTTON C A R, CLAASSENS N J, BENITO-VAQUERIZO S, et al. Renewable methanol and formate as microbial feedstocks[J]. Current Opinion in Biotechnology, 2020, 62: 168-180.

    [64] [64] DRING V, DARII E, YISHAI O, et al. Implementation of a reductive route of one-carbon assimilation in Escherichia coli through directed evolution[J]. ACS Synthetic Biology, 2018,7(9): 2029-2036.

    [65] [65] LIDSTROM M E, WANG J. Giving E. coli a newfound appetite for formate[J]. Nature Metabolism, 2020, 2(3): 219-220.

    [66] [66] LIEW F, MARTIN M E, TAPPEL R C, et al. Gas fermentation-a flexible platform for commercial scale production of low-carbonfuels and chemicals from waste and renewable feedstocks[J]. Frontiers in Microbiology, 2016, 7: 694.

    [67] [67] CHENOWETH J A, ALBERTSON T E, GREER M R. Carbon monoxide poisoning[J]. Critical Care Clinics, 2021, 37(3):657-672.

    [68] [68] ALONSO J R, CARDELLACH F, LPEZ S, et al. Carbon monoxide specifically inhibits cytochrome C oxidase of human mitochondrial respiratory chain[J]. Pharmacology & Toxicology, 2003, 93(3): 142-146.

    [69] [69] MEYER O, SCHLEGEL H G. Biology of aerobic carbon monoxide-oxidizing bacteria[J]. Annual Review of Microbiology, 1983,37: 277-310.

    [70] [70] OELGESCHLGER E, ROTHER M. Carbon monoxide-dependent energy metabolism in anaerobic bacteria and archaea[J]. Archives of Microbiology, 2008, 190(3): 257-269.

    [71] [71] RAGSDALE S W, PIERCE E. Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation[J]. Biochimica et Biophysica Acta Proteins & Proteomics, 2008, 1784(12): 1873-1898.

    [72] [72] ROBERTS D L, JAMES-HAGSTROM J E, GARVIN D K, et al. Cloning and expression of the gene cluster encoding key proteins involved in acetyl-CoA synthesis in clostridium thermoaceticum: CO dehydrogenase, the corrinoid/Fe-S protein, and methyltransferase[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(1): 32-63.

    [73] [73] FAST A G, PAPOUTSAKIS E T. Functional expression of the Clostridium ljungdahlii acetyl-coenzyme a synthase in clostridium acetobutylicum as demonstrated by a novel in vivo CO exchange activity en route to heterologous installation of a functional Wood-Ljungdahl pathway[J]. Applied and Environmental Microbiology, 2018, 84(7): e02307-e02317.

    [75] [75] HARVEY J P, COURCHESNE W, VO M D, et al. Greener reactants, renewable energies and environmental impact mitigation strategies in pyrometallurgical processes: a review[J]. MRS Energy & Sustainability: a Review Journal, 2022, 9(2): 212-247.

    [76] [76] LIU Z, WANG K, CHEN Y, et al. Third-generation biorefineries as the means to produce fuels and chemicals from CO2[J]. Nature Catalysis, 2020, 3(3): 274-288.

    [77] [77] FAYYAZ M, CHEW K W, SHOW P L, et al. Genetic engineering of microalgae for enhanced biorefinery capabilities[J]. Biotechnology Advances, 2020, 43: 107554.

    [78] [78] OLIVER N J, RABINOVITCH-DEERE C A, CARROLL A L, et al. Cyanobacterial metabolic engineering for biofuel and chemical production[J]. Current Opinion in Chemical Biology, 2016, 35:43-50.

    [79] [79] AGARWAL P, SONI R, KAUR P, et al. Cyanobacteria as a promising alternative for sustainable environment: synthesis of biofuel and biodegradable plastics[J]. Frontiers in Microbiology, 2022,13: 939347.

    [80] [80] ISHIZAKI A, TANAKA K, TAGA N. Microbial production of poly-D-3-hydroxybutyrate from CO2[J]. Applied Microbiology and Biotechnology, 2001, 57(1/2): 6-12.

    [81] [81] MARC J, GROUSSEAU E, LOMBARD E, et al. Over expression of GroESL in Cupriavidus necator for heterotrophic and autotrophic isopropanol production[J]. Metabolic Engineering, 2017,42: 74-84.

    [82] [82] NANGLE S N, ZIESACK M, BUCKLEY S, et al. Valorization of CO2 through lithoautotrophic production of sustainable chemicals in Cupriavidus necator[J]. Metabolic Engineering, 2020, 62:207-220.

    [83] [83] GROUSSEAU E, LU J, GORRET N, et al. Isopropanol production with engineered Cupriavidus necator as bioproduction platform[J]. Applied Microbiology and Biotechnology, 2014, 98(9):4277-4290.

    [84] [84] APARICI-CARRATAL D, ESCLAPEZ J, BAUTISTA V, et al. Archaea: current and potential biotechnological applications[J]. Research in Microbiology, 2023, 174(7): 104080.

    [85] [85] MELIS A. Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency[J]. Plant Science, 2009, 177(4): 272-280.

    [88] [88] GONG F, CAI Z, LI Y. Synthetic biology for CO2 fixation[J]. Science China Life Sciences, 2016, 59(11): 1106-1114.

    [89] [89] CLAASSENS N J. A warm welcome for alternative CO2 fixation pathways in microbial biotechnology[J]. Microbial Biotechnology, 2017, 10(1): 31-34.

    [90] [90] FLAMHOLZ A I, DUGAN E, BLIKSTAD C, et al. Functional reconstitution of a bacterial CO2 concentrating mechanism in Escherichia coli[J]. eLife, 2020, 9: e59882.

    [91] [91] LIU Z, LIU T. Production of acrylic acid and propionic acid by constructing a portion of the 3-hydroxypropionate/4-hydroxybutyrate cycle from Metallosphaera sedula in Escherichia coli[J]. Journal of Industrial Microbiology & Biotechnology, 2016,43(12): 1659-1670.

    [92] [92] MATTOZZI M, ZIESACK M, VOGES M J, et al. Expression of the sub-pathways of the Chloroflexus aurantiacus 3-hydroxy-propionate carbon fixation bicycle in E. coli: toward horizontal transfer of autotrophic growth[J]. Metabolic Engineering, 2013,16: 130-139.

    [93] [93] LIU X, FENG X, DING Y, et al. Characterization and directed evolution of propionyl-CoA carboxylase and its application in succinate biosynthetic pathway with two CO2 fixation reactions[J]. Metabolic Engineering, 2020, 62: 42-50.

    [94] [94] LIU X, ZHAO G, SUN S, et al. Biosynthetic pathway and metabolic engineering of succinic acid[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 843887.

    [95] [95] GUO L, ZHANG F, ZHANG C, et al. Enhancement of malate production through engineering of the periplasmic rTCA pathway in Escherichia coli[J]. Biotechnology and Bioengineering, 2018,115(6): 1571-1580.

    [96] [96] LUO S, DIEHL C, HE H, et al. Construction and modular implementation of the THETA cycle for synthetic CO2 fixation[J]. Nature Catalysis, 2023, 6(12): 1228-1240.

    [97] [97] KELLER M W, SCHUT G J, LIPSCOMB G L, et al. Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(15): 5840-5845.

    [98] [98] SCHADA VON BORZYSKOWSKI L, CARRILLO M, LEUPOLD S, et al. An engineered Calvin-Benson-Bassham cycle for carbon dioxide fixation in Methylobacterium extorquens AM1[J]. Metabolic Engineering, 2018, 47: 423-433.

    [99] [99] YU H, LI X, DUCHOUD F, et al. Augmenting the Calvin-Benson-Bassham cycle by a synthetic malyl-CoA-glycerate carbon fixation pathway[J]. Nature Communications, 2018, 9(1): 2008.

    [100] [100] LUO S, LIN P P, NIEH L Y, et al. A cell-free self-replenishing CO2-fixing system[J]. Nature Catalysis, 2022, 5(2): 154-162.

    [101] [101] UNDARAM S, DIEHL C, CORTINA N S, et al. A modular in vitro platform for the production of terpenes and polyketides from CO2[J]. Angewandte Chemie (International ed in English), 2021,60(30): 16420-16425.

    [102] [102] SCHWANDER T, SCHADA VON BORZYSKOWSKI L, BURGENER S, et al. A synthetic pathway for the fixation of carbon dioxide in vitro[J]. Science (New York, NY), 2016, 354(6314):900-904.

    [103] [103] XIAO L, LIU G, GONG F. A minimized synthetic carbon fixation cycle[J]. ACS Catalysis, 2022(1): 12.

    [104] [104] LU X, LIU Y, YANG Y, et al. Constructing a synthetic pathway for acetyl-coenzyme A from one-carbon through enzyme design[J]. Nature Communications, 2019, 10(1): 1378.

    [105] [105] JIE Z, DINGYU L, YUWAN L, et al. Hybrid synthesis of polyhy-droxybutyrate bioplastics from carbon dioxide[J]. Green Chemistry, 2023, 25(8): 3247-3255.

    [106] [106] CAI T, SUN H, QIAO J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide[J]. Science (New York, NY),2021, 373(6562): 1523-1527.

    [107] [107] BAR-EVEN A, NOOR E, LEWIS N E, et al. Design and analysis of synthetic carbon fixation pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(19): 8889-8894.

    [108] [108] CAN M, ARMSTRONG F A, RAGSDALE S W. Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase[J]. Chemical Reviews, 2014,114(8): 4149-4174.

    [109] [109] YURIMOTO H, KATO N, SAKAI Y. Assimilation, dissimilation, and detoxification of formaldehyde, a central metabolic intermediate of methylotrophic metabolism[J]. Chemical Record (New York, NY), 2005, 5(6): 367-375.

    [110] [110] RIESENBERG D, GUTHKE R. High-cell-density cultivation of microorganisms[J]. Applied Microbiology and Biotechnology, 1999, 51(4): 422-430.

    [111] [111] CHEN F Y, JUNG H W, TSUEI C Y, et al. Converting Escherichia coli to a synthetic methylotroph growing solely on methanol[J]. Cell, 2020, 182(4): 933-946.e14.

    [112] [112] PORTNOY V A, BEZDAN D, ZENGLER K. Adaptive laboratory evolution-harnessing the power of biology for metabolic engineering[J]. Current Opinion in Biotechnology, 2011, 22(4): 590-594.

    Tools

    Get Citation

    Copy Citation Text

    LIU Jiezheng, LIU Min, ZHAO Guang, XIAN Mo. Progress in Artificial Microbiol Transformation of One-carbon Compounds[J]. Acta Laser Biology Sinica, 2024, 33(5): 385

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 1, 2024

    Accepted: Dec. 10, 2024

    Published Online: Dec. 10, 2024

    The Author Email: Mo XIAN (xianmo@qibebt.ac.cn)

    DOI:10.3969/j.issn.1007-7146.2024.05.001

    Topics