Laser & Optoelectronics Progress, Volume. 61, Issue 9, 0931001(2024)

Photocarrier Radiometry Characteristics of PbS Colloidal Quantum Dot Films

Donghui Luo, Qian Wang*, and Zitao Zhao
Author Affiliations
  • School of Opto-electronical Engineering, Xi'an Technological University, Xi'an 710021, Shaanxi , China
  • show less
    References(27)

    [1] Chen W B, Ma H, Ye J X et al. Research progress on quantum dot light emitting diodes[J]. Laser & Optoelectronics Progress, 54, 110003(2017).

    [2] Yang D, Wang D K, Fang X et al. Research progress in surface modification engineering and application of PbSe quantum dots[J]. Laser & Optoelectronics Progress, 60, 1500004(2023).

    [3] Kramer I J, Sargent E H. Colloidal quantum dot photovoltaics: a path forward[J]. ACS Nano, 5, 8506-8514(2011).

    [4] Ning Z J, Gong X W, Comin R et al. Quantum-dot-in-perovskite solids[J]. Nature, 523, 324-328(2015).

    [5] Sargent E H. Infrared quantum dots[J]. Advanced Materials, 17, 515-522(2005).

    [6] Tang J, Sargent E H. Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress[J]. Advanced Materials, 23, 12-29(2011).

    [7] Sun L Q, Wang D K, Fang D et al. Quantum dots modified ZnO based fast-speed response ultraviolet photodetector[J]. Chinese Journal of Lasers, 49, 1303001(2022).

    [8] Xiao S, Xu X L. On-chip chiral nanophotonic devices based on semiconductor quantum dots[J]. Acta Optica Sinica, 42, 0327009(2022).

    [9] Pattantyus-Abraham A G, Kramer I J, Barkhouse A R et al. Depleted-heterojunction colloidal quantum dot solar cells[J]. ACS Nano, 4, 3374-3380(2010).

    [10] Bozyigit D, Lin W M M, Yazdani N et al. A quantitative model for charge carrier transport, trapping and recombination in nanocrystal-based solar cells[J]. Nature Communications, 6, 6180(2015).

    [11] Istrate E, Hoogland S, Sukhovatkin V et al. Carrier relaxation dynamics in lead sulfide colloidal quantum dots[J]. The Journal of Physical Chemistry B, 112, 2757-2760(2008).

    [12] Mandelis A, Batista J, Shaughnessy D. Infrared photocarrier radiometry of semiconductors:   Physical principles, quantitative depth profilometry, and scanning imaging of deep subsurface electronic defects[J]. Physical Review B, 67, 205208(2003).

    [13] Xia J, Mandelis A. Direct-search deep level photothermal spectroscopy: an enhanced reliability method for overlapped semiconductor defect state characterization[J]. Applied Physics Letters, 96, 262112(2010).

    [14] Nordal P E, Kanstad S O. New developments in photothermal radiometry[J]. Infrared Physics, 25, 295-304(1985).

    [15] Batista J, Mandelis A, Shaughnessy D et al. Deep subsurface electronic defect image contrast and resolution amplification in Si wafers using infrared photocarrier radiometry[J]. Applied Physics Letters, 85, 1713-1715(2004).

    [16] Fonoberov V A, Alim K A, Balandin A A et al. Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals[J]. Physical Review B, 73, 165317(2006).

    [17] Tongay S, Suh J, Ataca C et al. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged and free excitons[J]. Scientific Reports, 3, 2657(2013).

    [18] Saxena A, Yang S X, Philipose U et al. Excitonic and pair-related photoluminescence in ZnSe nanowires[J]. Journal of Applied Physics, 103, 053109(2008).

    [19] Wang H N, Ji Z W, Xiao H D et al. Influence of injection current and temperature on electroluminescence in InGaN/GaN multiple quantum wells[J]. Physica E: Low-Dimensional Systems and Nanostructures, 59, 56-59(2014).

    [20] Kim Y, Ban K Y, Kuciauskas D et al. Impact of delta-doping position on photoluminescence in type-II InAs/GaAsSb quantum dots[J]. Semiconductor Science and Technology, 30, 035006(2015).

    [21] Chuang C H M, Maurano A, Brandt R E et al. Open-circuit voltage deficit, radiative sub-bandgap states, and prospects in quantum dot solar cells[J]. Nano Letters, 15, 3286-3294(2015).

    [22] Kang M S, Sahu A, Norris D J et al. Size- and temperature-dependent charge transport in PbSe nanocrystal thin films[J]. Nano Letters, 11, 3887-3892(2011).

    [23] Hu L L. Quantitative carrier transport in quantum dot photovoltaic solar cells from novel photocarrier radiometry and lock-in carrierography[D](2017).

    [24] Ning Z J, Voznyy O, Pan J et al. Air-stable n-type colloidal quantum dot solids[J]. Nature Materials, 13, 822-828(2014).

    [25] Hu L L, Mandelis A, Melnikov A et al. Study of exciton hopping transport in PbS colloidal quantum dot thin films using frequency- and temperature-scanned photocarrier radiometry[J]. International Journal of Thermophysics, 38, 7(2017).

    [26] Huang Q P, Li B C. Self-eliminating instrumental frequency response from free carrier absorption signals for silicon wafer characterization[J]. Review of Scientific Instruments, 82, 043104(2011).

    [27] Wang J, Mandelis A, Sun Q M et al. Temperature- and size-dependent exciton dynamics in PbS colloidal quantum dot thin films using combined photoluminescence spectroscopy and photocarrier radiometry[J]. The Journal of Physical Chemistry C, 122, 5759-5766(2018).

    Tools

    Get Citation

    Copy Citation Text

    Donghui Luo, Qian Wang, Zitao Zhao. Photocarrier Radiometry Characteristics of PbS Colloidal Quantum Dot Films[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0931001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Thin Films

    Received: Jun. 8, 2023

    Accepted: Jun. 28, 2023

    Published Online: May. 7, 2024

    The Author Email: Qian Wang (qianwang@xatu.edu.cn)

    DOI:10.3788/LOP231484

    CSTR:32186.14.LOP231484

    Topics