Laser & Optoelectronics Progress, Volume. 58, Issue 16, 1615006(2021)

Surface Corrosion Detection of Quayside Crane Based on Improved MobileNetV2SSDLite

Dong Han1、*, Gang Tang1, and Zhengkun Zhao2
Author Affiliations
  • 1School of Logistics Engineering, Shanghai Maritime University, Shanghai 201306, China
  • 2Department of Electronic Engineering, University of York, YO105DD, UK
  • show less
    Figures & Tables(17)
    Structure of MobileNetV2SSDLite detection model
    Process of standard convolution and depth separable convolution. (a) Standard convolution; (b) depth separable convolution
    Different residuals. (a) Residual structure; (b) inverted residual structure
    Inverted residual block.(a) Stride is 1; (b) stride is 2
    Structure of improved network
    Images after data enhancement. (a) Original image; (b) color distortion; (c) random cropping; (d) horizontal flip; (e) random sampling
    Performance comparison of different models
    Number of network parameters and number of floating point operations
    Performance curves of various networks under different conditions. (a) Crack; (b) erosion; (c) overall
    Hard samples and easy sample. (a) Difficult sample 1; (b) simple sample; (c) difficult sample 2; (d) difficult sample 3
    Detection results of different networks. (a) image 1; (b) image 2; (c) image 3; (d) image 4
    Detection results of corrosion of quay bridge. (a) Banded corrosion; (b) pitting corrosion; (c) block corrosion
    • Table 1. Size of network priori box

      View table

      Table 1. Size of network priori box

      Network structureLayerSize/(pixel, pixel)
      Original SSDconv 4_3, conv 7, conv 8_2, conv 9_2, conv 10_2, conv 11_2(30, 60), (60, 111),(111, 162), (162, 213), (213, 264), (264, 315)
      MobileNetV2SSDLiteconv 13, conv 1, layer 19_2_2, layer 19_2_3, layer 19_2_4, layer 19_2_5(60, 60), (105, 150), (150, 195), (195, 240), (240, 285), (285, 300)
      Ours-MobileNetV2SSDLiteconv 13, conv 1, layer 19_2_2, layer 19_2_3, layer 19_2_4(51.2, 51.2), (89.6,128.0), (128.0,166.4), (166.4, 204.8), (204.8, 256.0)
    • Table 2. Parameters of basic network structure

      View table

      Table 2. Parameters of basic network structure

      BackboneBottleneck groupExpand ratioTimes of repetitionTotal bottleneck
      Original MobileNetV271, 6, 6, 6, 6, 6, 61, 2, 3, 4, 3, 3, 117
      Ours-MobileNetV281, 6, 6, 6, 6, 6, 6, 63, 2, 1, 2, 1, 1, 2, 214
    • Table 3. Parameters of network structure

      View table

      Table 3. Parameters of network structure

      Network structureSize of input image /(pixel×pixel)Number of default boxesFeature map size /(pixel×pixel)Number of prior boxes
      Original SSD300×3004, 6, 6, 6, 4, 438×38, 19×19, 10×10, 5×5, 3×3, 1×18732
      MobileNetV2SSDLite300×3003, 6, 6, 6, 6, 638×38, 19×19, 10×10, 5×5, 3×3, 1×17308
      Ours-MobileNetV2SSDLite256×2563, 6, 6, 6, 616×16, 8×8, 4×4, 2×2, 1×11278
    • Table 4. Performance comparison of different networks

      View table

      Table 4. Performance comparison of different networks

      NetworkParams /106FLOPs /109mAP /%FPS
      ShuffleNet-SSD8.261.2374.1342
      YOLOV3-Tiny7.900.8172.1440
      MobileNetV1SSD5.640.7973.6340
      SqueezeNet-SSD5.520.5176.3043
      MobileNetV2SSDLite3.320.64
      MobileNetV2SSDLiteV13.300.4477.4040
      MobileNetV2SSDLiteV20.960.1275.6245
    • Table 5. Impact of various methods on network performance

      View table

      Table 5. Impact of various methods on network performance

      Data enhancementHalf channelNo biasMulti-scalemAP /%Params /106FPS
      NoNoNoNo73.783.3040
      NoNoNoYes76.433.3040
      YesNoNoNo76.353.3040
      NoYesNoNo72.331.5844
      NoNoYesNo71.982.6841
      YesNoNoYes77.403.3040
      YesYesYesYes75.620.9645
    Tools

    Get Citation

    Copy Citation Text

    Dong Han, Gang Tang, Zhengkun Zhao. Surface Corrosion Detection of Quayside Crane Based on Improved MobileNetV2SSDLite[J]. Laser & Optoelectronics Progress, 2021, 58(16): 1615006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Nov. 9, 2020

    Accepted: Dec. 17, 2020

    Published Online: Aug. 19, 2021

    The Author Email: Dong Han (hd19821252578@163.com)

    DOI:10.3788/LOP202158.1615006

    Topics