Journal of Oral and Maxillofacial Surgery, Volume. 35, Issue 3, 227(2025)

Periosteal stem cells: Research progress and application prospect

YI Zumu, DENG Chen, and MAN Yi*
Author Affiliations
  • State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
  • show less
    References(37)

    [1] [1] SeemanE. Periosteal bone formation—a neglected determinant of bone strength[J]. N Engl J Med, 2003, 349(4): 320-323

    [2] [2] LinZ, FatehA, SalemDM, et al. Periosteum: Biology and applications in craniofacial bone regeneration[J]. J Dent Res, 2014, 93(2): 109-116.

    [3] [3] DebnathS, YallowitzAR, McCormickJ, et al. Discovery of a periosteal stem cell mediating intramembranous bone formation[J]. Nature, 2018, 562(7725): 133-139.

    [4] [4] Duchamp de LagenesteO, JulienA, Abou-KhalilR, et al. Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin[J]. Nat Commun, 2018, 9(1): 773.

    [5] [5] OrtinauLC, WangH, LeiK, et al. Identification of functionally distinct Mx1+SMA+ periosteal skeletal stem cells[J]. Cell Stem Cell, 2019, 25(6): 784-796.e5.

    [6] [6] JefferyEC, MannTLA, PoolJA, et al. Bone marrow and periosteal skeletal stem/progenitor cells make distinct contributions to bone maintenance and repair[J]. Cell Stem Cell, 2022, 29(11): 1547-1561.e6.

    [7] [7] DingY, MoC, GengJ, et al. Identification of periosteal osteogenic progenitors in jawbone[J]. J Dent Res, 2022, 101(9): 1101-1109.

    [8] [8] van GastelN, StegenS, EelenG, et al. Lipid availability determines fate of skeletal progenitor cells via SOX9[J]. Nature, 2020, 579(7797): 111-117.

    [9] [9] MarcucioRS, MiclauT3rd, BahneyCS. A shifting paradigm: Transformation of cartilage to bone during bone repair[J]. J Dent Res, 2023, 102(1): 13-20.

    [10] [10] GraysonWL, BunnellBA, MartinE, et al. Stromal cells and stem cells in clinical bone regeneration[J]. Nat Rev Endocrinol, 2015, 11(3): 140-150.

    [11] [11] OostingaD, SteverinkJG, van WijckAJM, et al. An understanding of bone pain: A narrative review[J]. Bone, 2020, 134: 115272.

    [12] [12] BiancoP, RobeyPG. Skeletal stem cells[J]. Development, 2015, 142(6): 1023-1027.

    [13] [13] LeuchtP, KimJB, AmashaR, et al. Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration[J]. Development, 2008, 135(17): 2845-2854.

    [14] [14] LiuY, IlinskiA, GerstenfeldLC, et al. Prx1 cell subpopulations identified in various tissues with diverse quiescence and activation ability following fracture and BMP2stimulation[J]. Front Physiol, 2023, 14: 1106474.

    [15] [15] GaoB, DengRX, ChaiY, et al. Macrophage-lineage TRAP+ cells recruit periosteum-derived cells for periosteal osteogenesis and regeneration[J]. J Clin Invest, 2019, 129(6): 2578-2594.

    [16] [16] XuJJ, WangYY, LiZ, et al. PDGFR reporter activity identifies periosteal progenitor cells critical for bone formation and fracture repair[J]. Bone Res, 2022, 10(1): 7.

    [17] [17] JulienA, PerrinS, Martnez-SarrE, et al. Skeletal stem/progenitor cells in periosteum and skeletal muscle share a common molecular response to bone injury[J]. J Bone Miner Res, 2022, 37(8): 1545-1561.

    [18] [18] HeXJ, BougioukliS, OrtegaB, et al. Sox9 positive periosteal cells in fracture repair of the adult mammalian long bone[J]. Bone, 2017, 103: 12-19.

    [19] [19] ShiY, HeGX, LeeWC, et al. Gli1 identifies osteogenic progenitors for bone formation and fracture repair[J]. Nat Commun, 2017, 8(1): 2043.

    [20] [20] YuW, ZhongLL, YaoLT, et al. Bone marrow adipogenic lineage precursors promote osteoclastogenesis in bone remodeling and pathologic bone loss[J]. J Clin Invest, 2021, 131(2): e140214.

    [21] [21] YoshimuraH, MunetaT, NimuraA, et al. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle[J]. Cell Tissue Res, 2007, 327(3): 449-462.

    [22] [22] OwstonHE, GangulyP, TronciG, et al. Colony formation, migratory, and differentiation characteristics of multipotential stromal cells (MSCs) from "clinically accessible" human periosteum compared to donor-matched bone marrow MSCs[J]. Stem Cells Int, 2019, 2019: 6074245.

    [23] [23] XuYM, ZhuoJ, WangQS, et al. Site-specific periosteal cells with distinct osteogenic and angiogenic characteristics[J]. Clin Oral Investig, 2023, 27(12): 7437-7450.

    [24] [24] BolanderJ, ChaiYC, GerisL, et al. Early BMP, Wnt and Ca(2+)/PKC pathway activation predicts the bone forming capacity of periosteal cells in combination with calcium phosphates[J]. Biomaterials, 2016, 86: 106-118.

    [25] [25] LeeS, RemarkLH, JosephsonAM, et al. Notch-Wnt signal crosstalk regulates proliferation and differentiation of osteoprogenitor cells during intramembranous bone healing[J]. NPJ Regen Med, 2021, 6(1): 29.

    [26] [26] WangX, MatthewsBG, YuJ, et al. PDGF modulates BMP2-induced osteogenesis in periosteal progenitor cells[J]. JBMR Plus, 2019, 3(5): e10127.

    [27] [27] MinearS, LeuchtP, MillerS, et al. rBMP represses Wnt signaling and influences skeletal progenitor cell fate specification during bone repair[J]. J Bone Miner Res, 2010, 25(6): 1196-1207.

    [28] [28] JulienA, PerrinS, Duchamp de LagenesteO, et al. FGFR3 in periosteal cells drives cartilage-to-bone transformation in bone repair[J]. Stem Cell Reports, 2020, 15(4): 955-967.

    [29] [29] van GastelN, StegenS, StockmansI, et al. Expansion of murine periosteal progenitor cells with fibroblast growth factor 2 reveals an intrinsic endochondral ossification program mediated by bone morphogenetic protein 2[J]. Stem Cells, 2014, 32(9): 2407-2418.

    [30] [30] XiaCJ, GeQW, FangL, et al. TGF-/Smad2signalling regulates enchondral bone formation of Gli1+ periosteal cells during fracture healing[J]. Cell Prolif, 2020, 53(11): e12904.

    [31] [31] LiuYY, LanDP, GaoJY, et al. Guided bone regeneration for peri-implant augmentation: A retrospective study comparing two surgical techniques with a mean follow-up of 26months[J]. Clin Oral Implants Res, 2024, 35(5): 573-584.

    [32] [32] Al MarufDSA, GhoshYA, XinH, et al. Hydrogel: A potential material for bone tissue engineering repairing the segmental mandibular defect[J]. Polymers (Basel), 2022, 14(19): 4186.

    [33] [33] OkudaK, KawaseT, NagataM, et al. Tissue-engineered cultured periosteum sheet application to treat infrabony defects: Case series and 5-year results[J]. Int J Periodontics Restorative Dent, 2013, 33(3): 281-287.

    [34] [34] ChenDY, ZhangXL, HeYH, et al. Co-culturing mesenchymal stem cells from bone marrow and periosteum enhances osteogenesis and neovascularization of tissue-engineered bone[J]. J Tissue Eng Regen Med, 2012, 6(10): 822-832.

    [35] [35] KudvaAK, LuytenFP, PattersonJ. RGD-functionalized polyethylene glycol hydrogels support proliferation and in vitro chondrogenesis of human periosteum-derived cells[J]. J Biomed Mater Res A, 2018, 106(1): 33-42.

    [36] [36] ZhaoXK, ZhuangY, CaoYJ, et al. Electrospun biomimetic periosteum capable of controlled release of multiple agents for programmed promoting bone regeneration[J]. Adv Healthc Mater, 2024, 13(12): e2303134.

    [37] [37] ZhuJ, ZhangS, JinS, et al. Endochondral repair of jawbone defects using periosteal cell spheroids[J]. J Dent Res, 2024, 103(1): 31-41.

    Tools

    Get Citation

    Copy Citation Text

    YI Zumu, DENG Chen, MAN Yi. Periosteal stem cells: Research progress and application prospect[J]. Journal of Oral and Maxillofacial Surgery, 2025, 35(3): 227

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 24, 2024

    Accepted: Aug. 21, 2025

    Published Online: Aug. 21, 2025

    The Author Email: MAN Yi (manyi780203@126.com)

    DOI:10.12439/kqhm.1005-4979.2025.03.010

    Topics