Acta Optica Sinica, Volume. 41, Issue 20, 2012002(2021)
Displacement Field Measurement of Speckle Images Using Convolutional Neural Network
[1] Pan B, Qian K M, Xie H M et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review[J]. Measurement Science and Technology, 20, 062001(2009).
[2] Wang M, Cen Y W, Hu X F et al. A weighting window applied to the digital image correlation method[J]. Optics & Laser Technology, 41, 154-158(2009).
[3] Zhang X C, Wang Y, Guo N et al. Effect of ferrite/pearlite banded structure on the local deformation and crack initiation at notches in pipeline steel[J]. Engineering Fracture Mechanics, 237, 107244(2020).
[4] Yu Q F[M]. Image based precision measurement and motion measurement, 1-10(2002).
[5] Wang C Y, He X Y. Curved surface approximation in correlation recognition method[J]. Journal of Experimental Mechanics, 15, 280-285(2000).
[6] Rui J B, Jin G C, Xu B Y[J]. A new digital speckle correlation method and its application Acta Mechanica Sinica, 1994, 599-607.
[7] Bruck H A. McNeill S R, Sutton M A, et al. Digital image correlation using Newton-Raphson method of partial differential correction[J]. Experimental Mechanics, 29, 261-267(1989).
[8] Davis C Q, Freeman D M. Statistics of subpixel registration algorithms based on spatiotemporal gradients or block matching[J]. Optical Engineering, 37, 1290-1298(1998).
[10] Pitter M C, See C W, Somekh M G. Subpixel microscopic deformation analysis using correlation and artificial neural networks[J]. Optics Express, 8, 322-327(2001).
[11] Liu X Y, Gong Y, Li R L et al. Non-iterative gray-gradient algorithm based on BP artificial neural network in digital image correlation[J]. Machine Tool & Hydraulics, 46, 7-11(2018).
[12] Pan B, Xie H M, Xu B Q et al. Development of sub-pixel displacements registration algorithms in digital image correlation[J]. Advances in Mechanics, 35, 345-352(2005).
[13] Pan B, Xie H M, Xu B Q et al. Performance of sub-pixel registration algorithms in digital image correlation[J]. Measurement Science and Technology, 17, 1615-1621(2006).
[14] Wang X B, Dong W, Yang M et al. Inhomogeneous strain measurement based on least absolute deviation fitting for digital image correlation[J]. Acta Optica Sinica, 40, 0312001(2020).
[15] Liu Y, Xiao S D, Zhang R et al. Initial estimation of digital image correlated deformation based on genetic algorithms[J]. Laser Technology, 44, 130-135(2020).
[17] Zhu T T, Fu Z N, Zhang M et al. Initial value estimation of digital image correlation method in deformation measurement based on feature matching[J]. Laser & Optoelectronics Progress, 57, 181012(2020).
[18] Ye P, Zhang M, Ma W L et al. Improved climbing algorithm for digital image correlation displacement measurements[J]. Laser & Optoelectronics Progress, 57, 021506(2020).
[19] LeCun Y, Bottou L, Bengio Y et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 86, 2278-2324(1998).
[20] Luo H L, Yang Y, Tong B et al. Traffic sign recognition using a multi-task convolutional neural network[J]. IEEE Transactions on Intelligent Transportation Systems, 19, 1100-1111(2018).
[21] Park J K, Kwon B K, Park J H et al. Machine learning-based imaging system for surface defect inspection[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 3, 303-310(2016).
[22] Min H G, On H I, Kang D J et al. Strain measurement during tensile testing using deep learning-based digital image correlation[J]. Measurement Science and Technology, 31, 015014(2020).
[23] [23] DosovitskiyA, FischerP, IlgE, et al.FlowNet: learning optical flow with convolutional networks[C]∥2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE Press, 2015: 2758- 2766.
[24] Su Z L. Research on deformation measurement method based on feature recognition[D]. Nanjing: Southeast University, 99-121(2019).
[25] Yue Y, Wang B[M]. Deep learning, 20-21(2016).
[26] Peng Z, Goodson K E. Subpixel displacement and deformation gradient measurement using digital image/speckle correlation (DISC)[J]. Optical Engineering, 40, 1613-1620(2001).
Get Citation
Copy Citation Text
Ju Huang, Cuiru Sun, Xianglong Lin. Displacement Field Measurement of Speckle Images Using Convolutional Neural Network[J]. Acta Optica Sinica, 2021, 41(20): 2012002
Category: Instrumentation, Measurement and Metrology
Received: Feb. 5, 2021
Accepted: Apr. 29, 2021
Published Online: Sep. 30, 2021
The Author Email: Sun Cuiru (carry_sun@tju.edu.cn)