Journal of the Chinese Ceramic Society, Volume. 51, Issue 2, 452(2023)
Studies on Perovskite Material and Its Applications via Machine Learning
[1] [1] WANG Y, LV Z, ZHOU L, et al. Emerging perovskite materials for high density data storage and artificial synapses[J]. J Mater Chem C, 2018, 6(7): 1600-1617.
[2] [2] TRAVIS W, GLOVER E N K, BRONSTEIN H, et al. On the application of the tolerance factor to inorganic and hybrid halide perovskites: A revised system[J]. Chem Sci, 2016, 7(7): 4548-4556.
[3] [3] ZHAO X G, YANG D W, REN J C. Rational design of halide double perovskites for optoelectronic applications [J]. Joule, 2018, 2(19): 1662-1673.
[4] [4] YIN W J, WENG B, GE J, et al. Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics[J]. Energy Environ Sci, 2019, 12(2): 442-462.
[5] [5] K?RBEL S, MARQUES M A L, BOTTI S. Stability and electronic properties of new inorganic perovskites from high-throughput ab initio calculations[J]. J Mater Chem C, 2016, 4(15): 3157-3167.
[6] [6] SLAVNEY A H, HU T, LINDENBERG A M, et al. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications[J]. J Am Chem Soc, 2016, 138(7): 2138-2141.
[7] [7] FILIP M R, HILLMAN S, HAGHIGHIRAD A A, et al. Band gaps of the lead-free halide double perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from theory and experiment[J]. J Phys Chem Lett, 2016, 7(13): 2579-2585.
[8] [8] SYZGANTSEVA O A, SALIBA M, GR?TZEL M, et al. Stabilization of the perovskite phase of formamidinium lead triiodide by methylammonium, Cs, and/or Rb doping[J]. J Phys Chem Lett, 2017, 8(6): 1191-1196.
[9] [9] KUBICKI D J, PROCHOWICZ D, HOFSTETTER A, et al. Cation dynamics in mixed-cation (MA)x(FA)1-xPbI3 hybrid perovskites from solid-state NMR[J]. J Am Chem Soc, 2017, 139(29): 10055-10061.
[10] [10] LI C, HAO H, XU B, et al. A progressive learning method for predicting the band gap of ABO3 perovskites using an instrumental variable[J]. J Mater Chem C, 2020, 8(9): 3127-3136.
[11] [11] VELDHUIS S A, BOIX P P, YANTARA N, et al. Perovskite materials for light-emitting diodes and lasers[J]. Adv Mater, 2016, 28(32): 6804-6834.
[12] [12] WANG Y, TANG Y, JIANG J, et al. Mixed-dimensional self-assembly organic-inorganic perovskite microcrystals for stable and efficient photodetectors[J]. J Mater Chem C, 2020, 8(16): 5399-5408.
[13] [13] EKSTR?M E, LE FEBVRIER A, BOURGEOIS F, et al. The effects of microstructure, Nb content and secondary Ruddlesden-Popper phase on thermoelectric properties in perovskite CaMn1?xNbxO3 (x= 0-0.10) thin films[J]. RSC Adv, 2020, 10(13): 7918-7926.
[14] [14] OR?-SOL? J, CLARK L, KUMAR N, et al. Synthesis, anion order and magnetic properties of RVO3?xNx perovskites (R=La, Pr, Nd; 0≤x≤1)[J]. J Mater Chem C, 2014, 2(12): 2212-2220.
[15] [15] SHIOGAI J, CHIDA T, HASHIMOTO K, et al. Signature of band inversion in the perovskite thin-film alloys BaSn1-xPbxO3. [J]. Phys Rev B, 2020, 101(12): 125125.
[16] [16] SYDORCHUK V, LUTSYUK I, SHVED V, et al. PrCo1?xFexO3 perovskite powders for possible photocatalytic applications[J]. Res Chem Intermediat, 2020, 46(3): 1909-1930.
[17] [17] JI T, NIU T, WANG J, et al. Crystallization regulation of solution-processed two-dimensional perovskite solar cells[J]. J Mater Chem A, 2022, 10(26): 13625-13650.
[18] [18] ZHU T, YANG Y, GONG X. Recent advancements and challenges for low-toxicity perovskite materials[J]. ACS Appl Mater Inter, 2020, 12(24): 26776-26811.
[19] [19] YIN W J, SHI T, YAN Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber[J]. Appl Phys Lett, 2014, 104(6): 063903.
[20] [20] ZHAO D, WANG B, LIANG C, et al. Facile deposition of high-quality Cs2AgBiBr6 films for efficient double perovskite solar cells[J]. Sci China Mater, 2020, 63(8): 1518-1525.
[21] [21] LI L, TIAN G, CHANG W, et al. A novel double-perovskite LiLaMgTeO6: Mn4+ far-red phosphor for indoor plant cultivation white LEDs: Crystal and electronic structure, and photoluminescence properties[J]. J Alloy Compd, 2020, 832: 154905.
[22] [22] ALVES G A S, CENTURION H A, SAMBRANO J R, et al. Band gap narrowing of Bi-doped NaTaO3 for photocatalytic hydrogen evolution under simulated sunlight: A pseudocubic phase induced by doping[J]. ACS Applied Energy Materials, 2021, 4(1): 671-679.
[23] [23] GREEN M A, DUNLOP E D, HOHL-EBINGER J, et al. Solar cell efficiency tables (version 58)[J]. Prog Photovolt: Res Appl, 2021, 29(7): 657-667.
[24] [24] MA S, YUAN G, ZHANG Y, et al. Development of encapsulation strategies towards the commercialization of perovskite solar cells[J]. Energy Environ Sci, 2022, 15(1): 13-55.
[25] [25] WANG M, WANG W, MA B, et al. Lead-free perovskite materials for solar cells[J]. Nano-Micro Lett, 2021, 13(1): 62.
[26] [26] SCHMIDT-MENDE L, DYAKONOV V, OLTHOF S, et al. Roadmap on organic-inorganic hybrid perovskite semiconductors and devices[J]. APL Materials, 2021, 9(10): 109202.
[27] [27] WANG R, MUJAHID M, DUAN Y, et al. A review of perovskites solar cell stability[J]. Adv Funct Mater, 2019, 29(47): 1808843.
[28] [28] GRASER J, KAUWE S K, SPARKS T D. Machine learning and energy minimization approaches for crystal structure predictions: A review and new horizons[J]. Chem Mater, 2018, 30(11): 3601-3612.
[29] [29] RAJAN K. Materials informatics[J]. Mater Today, 2005, 8(10): 38-45.
[30] [30] HUSSAIN A, YANG L H, ZOU Y B, et al. Monte Carlo simulation study of electron yields from compound semiconductor materials[J]. J Appl Phys, 2020, 128(1): 015305.
[31] [31] ALDER B J, WAINWRIGHT T E. Studies in molecular dynamics. I. General method[J]. J Chem Phys, 1959, 31(2): 459-466.
[32] [32] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Phys Rev, 1964, 136(3B): B864-B871.
[33] [33] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865-3868.
[34] [34] AGRAWAL A, CHOUDHARY A. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science[J]. APL Mater, 2016, 4(5): 053208.
[35] [35] JORDAN M I, MITCHELL T M. Machine learning: Trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260.
[36] [36] RUPP M. Machine learning for quantum mechanics in a nutshell[J]. Int J Quantum Chem, 2015, 115(16): 1058-1073.
[37] [37] SUN W, ZHENG Y, YANG K, et al. Machine learning-assisted molecular design and efficiency prediction for high-performance organic photovoltaic materials[J]. Sci Adv, 2019, 5: eaay4275.
[38] [38] STANEV V, OSES C, KUSNE A G, et al. Machine learning modeling of superconducting critical temperature[J]. NPJ Comput Mater, 2018, 4(1): 29.
[39] [39] ZHOU T, SONG Z, SUNDMACHER K. Big data creates new opportunities for materials research: A review on methods and applications of machine learning for materials design[J]. Engineering, 2019, 5(6): 1017-1026.
[40] [40] DAI D, XU T, WEI X, et al. Using machine learning and feature engineering to characterize limited material datasets of high-entropy alloys[J]. Comp Mater Sci, 2020, 175: 109618.
[41] [41] GANTZER P, CRETON B, NIETO DRAGHI C. Inverse-QSPR for de novo design: A review[J]. Molecular Inform, 2020, 39(4): 1900087.
[42] [42] RACCUGLIA P, ELBERT K C, ADLER P D F, et al. Machine- learning-assisted materials discovery using failed experiments[J]. Nature, 2016, 533(7601): 73-76.
[43] [43] BALACHANDRAN P V, KOWALSKI B, SEHIRLIOGLU A, et al. Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning[J]. Nat Commun, 2018, 9(1): 1668.
[44] [44] LIU Y, ZHAO T, JU W, et al. Materials discovery and design using machine learning[J]. J Materiomics, 2017, 3(3): 159-177.
[45] [45] SCHMIDT J, MARQUES M R G, BOTTI S, et al. Recent advances and applications of machine learning in solid-state materials science[J]. NPJ Comput Mater, 2019, 5(1): 83.
[46] [46] GOLDSMITH B R, ESTERHUIZEN J, LIU J-X, et al. Machine learning for heterogeneous catalyst design and discovery[J]. AIChE J, 2018, 64(7): 2311-2323.
[47] [47] RAMPRASAD R, BATRA R, PILANIA G, et al. Machine learning in materials informatics: Recent applications and prospects[J]. NPJ Comput Mater, 2017, 3(1): 54.
[48] [48] HAIXIANG G, YIJING L, SHANG J, et al. Learning from class-imbalanced data: Review of methods and applications[J]. Expert Syst Appl, 2017, 73: 220-239.
[49] [49] WOHLRAB L, FüRNKRANZ J. A review and comparison of strategies for handling missing values in separate-and-conquer rule learning[J]. J Intell Inf Syst, 2011, 36(1): 73-98.
[50] [50] XU X, LIU H, YAO M. Recent progress of anomaly detection[J]. Complexity, 2019: 2686378.
[51] [51] WANG Y, PAN Z, PAN Y. A training data set cleaning method by classification ability ranking for the k-nearest neighbor classifier[J]. IEEE Transact Neur Network Learn Syst, 2020, 31(5): 1544-1556.
[52] [52] CHEN C, ZUO Y, YE W, et al. A critical review of machine learning of energy materials[J]. Adv Energy Mater, 2020, 10(8): 1903242.
[53] [53] BRAHAM E J, CHO J, FORLANO K M, et al. Machine learning-directed navigation of synthetic design space: A statistical learning approach to controlling the synthesis of perovskite halide nanoplatelets in the quantum-confined regime[J]. Chem Mater, 2019, 31(9): 3281-3292.
[54] [54] TAO Q, XU P, LI M, et al. Machine learning for perovskite materials design and discovery[J]. npj Comput Mater, 2021, 7(1): 23.
[55] [55] ZHANG Y, LING C. A strategy to apply machine learning to small datasets in materials science[J]. npj Comput Mater, 2018, 4(1): 25.
[56] [56] WEI J, CHU X, SUN X Y, et al. Machine learning in materials science[J]. InfoMat, 2019, 1(3): 338-358.
[57] [57] LIU Y, WU J M, AVDEEV M, et al. Multi-layer feature selection incorporating weighted score-based expert knowledge toward modeling materials with targeted properties[J]. Adv Theor Simul, 2020, 3(2): 1900215.
[59] [59] RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062): 1518-1524.
[60] [60] LUNDBERG S M, LEE S I, A unified approach to interpreting model predictions[C]//31st Annual Conference on Neural Information Processing Systems, Long Beach, CA, 2017.
[61] [61] MA B, WEI X, LIU C, et al. Data augmentation in microscopic images for material data mining[J]. npj Comput Mater, 2020, 6(1): 125.
[62] [62] MIN K, CHO E. Accelerated discovery of potential ferroelectric perovskite via active learning[J]. J Mater Chem C, 2020, 8(23): 7866-7872.
[63] [63] CHEN D, SUN D, FU J, et al. Semi-supervised learning framework for aluminum alloy metallographic image segmentation[J]. IEEE Access, 2021, 9: 30858-30867.
[64] [64] PRUKSAWAN S, LAMBARD G, SAMITSU S, et al. Prediction and optimization of epoxy adhesive strength from a small dataset through active learning[J]. Sci Technol Adv Mater, 2019, 20(1): 1010-1021.
[65] [65] SHEN S, SADOUGHI M, LI M, et al. Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries[J]. Appl Energy, 2020, 260: 114296.
[66] [66] TOGO R, SAITO N, OGAWA T, et al. Estimating regions of deterioration in electron microscope images of rubber materials via a transfer learning-based anomaly detection model[J]. IEEE Access, 2019, 7: 162395-162404.
[67] [67] LU T, LI H, LI M, et al. Inverse design of hybrid organic-inorganic perovskites with suitable bandgaps via proactive searching progress[J]. ACS Omega, 2022, 7(25): 21583-21594.
[68] [68] CERIOTTI M. Unsupervised machine learning in atomistic simulations, between predictions and understanding[J]. J Chem Phys, 2019, 150(15): 150901.
[69] [69] ORUPATTUR N V, MUSHRIF S H, PRASAD V. Catalytic materials and chemistry development using a synergistic combination of machine learning and ab initio methods[J]. Comp Mater Sci, 2020, 174: 109474.
[70] [70] TOYAO T, MAENO Z, TAKAKUSAGI S, et al. Machine learning for catalysis informatics: Recent applications and prospects[J]. ACS Catal, 2019, 10: 2260-2297.
[71] [71] JING L, TIAN Y. Self-supervised visual feature learning with deep neural networks: A survey[J]. IEEE Transact Pattern Anal, 2021, 43(11): 4037-4058.
[72] [72] KONG J G, LI Q X, LI J, et al. Self-supervised graph neural networks for accurate prediction of néel temperature[J]. Chin Phys Lett, 2022, 39(6): 067503.
[73] [73] DOAN H, AGHARWAL G, QIAN H, et al. Quantum chemistry-informed active learning to accelerate the design and discovery of sustainable energy storage materials[J]. Chem Mater, 2020, 32(15): 6338, 6346.
[74] [74] LOOKMAN T, BALACHANDRAN P V, XUE D, et al. Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design[J]. npj Comput Mater, 2019, 5(1): 21.
[75] [75] RAJAK P, WANG B, NOMURA K I, et al. Autonomous reinforcement learning agent for stretchable kirigami design of 2D materials[J]. NPJ Comput Mater, 2021, 7(1): 102.
[76] [76] XUE D, BALACHANDRAN P V, HOGDEN J, et al. Accelerated search for materials with targeted properties by adaptive design[J]. Nat Commun, 2016, 7(1): 11241.
[77] [77] LIU Y, GUO B R, ZOU X X, et al. Machine learning assisted materials design and discovery for rechargeable batteries[J]. Energy Storage Mater, 2020, 31: 434-450.
[78] [78] WANG Y, WAGNER N, RONDINELLI J M. Symbolic regression in materials science[J]. MRS Communications, 2019, 9(3): 793-805.
[79] [79] WENG B, SONG Z, ZHU R, et al. Simple descriptor derived from symbolic regression accelerating the discovery of new perovskite catalysts[J]. Nat Commun, 2020, 11(1): 3513.
[80] [80] GOLDSCHMIDT V M. Die gesetze der krystallochemie[J]. Naturwissenschaften, 1926, 14(21): 477-485.
[81] [81] LI C, SOH K C K, WU P. Formability of ABO3 perovskites[J]. J Alloy Compd, 2004, 372(1): 40-48.
[82] [82] SUN Q, YIN W J. Thermodynamic stability trend of cubic perovskites[J]. J Am Chem Soc, 2017, 139(42): 14905-14908.
[83] [83] BARTEL C J, SUTTON C, GOLDSMITH B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides[J]. Sci Adv, 2019, 5(2): eaav0693.
[84] [84] TALAPATRA A, UBERUAGA B P, STANEK C R, et al. A machine learning approach for the prediction of formability and thermodynamic stability of single and double perovskite oxides[J]. Chem Mater, 2021, 33(3): 845-858.
[85] [85] LU T, LI H, LI M, et al. Predicting experimental formability of hybrid organic-inorganic perovskites via imbalanced learning[J]. J Phys Chem Lett, 2022, 13(13): 3032?3038.
[86] [86] ZHANG S, LU T, XU P, et al. Predicting the formability of hybrid organic-inorganic perovskites via an interpretable machine learning strategy[J]. J Phys Chem Lett, 2021, 12(31): 7423-7430.
[87] [87] LIU H, CHENG J, DONG H, et al. Screening stable and metastable ABO3 perovskites using machine learning and the materials project[J]. Comp Mater Sci, 2020, 177: 109614.
[88] [88] ARMIENTO R, KOZINSKY B, HAUTIER G, et al. High-throughput screening of perovskite alloys for piezoelectric performance and thermodynamic stability[J]. Phys Rev B, 2014, 89(13): 134103.
[89] [89] LIU M, RONG Z, MALIK R, et al. Spinel compounds as multivalent battery cathodes: A systematic evaluation based on ab initio calculations[J]. Energy Environ Sci, 2015, 8(3): 964-974.
[90] [90] ONG S P, WANG L, KANG B, et al. Li?Fe?P?O2 phase diagram from first principles calculations[J]. Chem Mater, 2008, 20(5): 1798-1807.
[91] [91] ASKERKA M, LI Z, LEMPEN M, et al. Learning-in-templates enables accelerated discovery and synthesis of new stable double perovskites[J]. J Am Chem Soc, 2019, 141(8): 3682-3690.
[92] [92] YE W, CHEN C, WANG Z, et al. Deep neural networks for accurate predictions of crystal stability[J]. Nat Commun, 2018, 9(1): 3800.
[93] [93] LI Z, XU Q, SUN Q, et al. Thermodynamic stability landscape of halide double perovskites via high-throughput computing and machine learning[J]. Adv Funct Mater, 2019, 29(9): 1807280.
[94] [94] SCHMIDT J, SHI J, BORLIDO P, et al. Predicting the thermodynamic stability of solids combining density functional theory and machine learning[J]. Chem Mater, 2017, 29(12): 5090-5103.
[95] [95] LI W, JACOBS R, MORGAN D. Predicting the thermodynamic stability of perovskite oxides using machine learning models[J]. Comp Mater Sci, 2018, 150: 454-463.
[96] [96] SOE C M M, STOUMPOS C C, KEPENEKIAN M, et al. New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: Structure, properties, and photovoltaic performance[J]. J Am Chem Soc, 2017, 139(45): 16297-16309.
[97] [97] YIN T, LIU B, YAN J, et al. Pressure-engineered structural and optical properties of two-dimensional (C4H9NH3)2PbI4 perovskite exfoliated nm-thin flakes[J]. J Am Chem Soc, 2019, 141(3): 1235-1241.
[98] [98] PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Lett, 2015, 15(6): 3692-3696.
[99] [99] MYUNG C W, YUN J, LEE G, et al. A new perspective on the role of a-site cations in perovskite solar cells[J]. Adv Energy Mater, 2018, 8(14): 1702898.
[100] [100] YIN W J, YANG J H, KANG J, et al. Halide perovskite materials for solar cells: A theoretical review[J]. J Mater Chem A, 2015, 3(17): 8926-8942.
[101] [101] GUO Z, LIN B. Machine learning stability and band gap of lead-free halide double perovskite materials for perovskite solar cells[J]. Sol Energy, 2021, 228: 689-699.
[102] [102] GAO Z, ZHANG H, MAO G, et al. Screening for lead-free inorganic double perovskites with suitable band gaps and high stability using combined machine learning and DFT calculation[J]. Appl Surf Sci, 2021, 568: 150916.
[103] [103] LIU Y, YANG Z, CUI D, et al. Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: Growth and characterization[J]. Adv Mater, 2015, 27(35): 5176-5183.
[104] [104] WU Y, LU S, JU M G, et al. Accelerated design of promising mixed lead-free double halide organic?inorganic perovskites for photovoltaics using machine learning[J]. Nanoscale, 2021, 13(28): 12250-12259.
[105] [105] CHEN J L, XU W J, ZHNG R Q. Δ-machine learning-driven discovery of double hybrid organic-inorganic perovskites[J]. J Mater Chem A, 2022, 10: 1402-1413.
[106] [106] JU M G, DAI J, MA L, et al. Perovskite chalcogenides with optimal bandgap and desired optical absorption for photovoltaic devices[J]. Adv Energy Mater, 2017, 7(18): 1700216.
[107] [107] JU M G, DAI J, MA L, et al. Lead-free mixed tin and germanium perovskites for photovoltaic application[J]. J Am Chem Soc, 2017, 139(23): 8038-8043.
[108] [108] PUPPIN M, POLISHCHUK S, COLONNA N, et al. Evidence of large polarons in photoemission band mapping of the perovskite semiconductor CsPbBr3[J]. Phys Rev Lett, 2020, 124(20): 206402.
[109] [109] CAI X, LIU F, YU A, et al. Data-driven design of high-performance MaSnxPb1?xI3 perovskite materials by machine learning and experimental realization[J]. Light Sci Appl, 2022, 11(1): 234.
[110] [110] ZHANG L, HE M, SHAO S F. Machine learning for halide perovskite materials[J]. Nano Energy, 2020, 78: 105380.
[111] [111] SRIVASTAVA M, HOWARD J M, GONG T, et al. Machine learning roadmap for perovskite photovoltaics[J]. J Phys Chem Lett, 2021, 12(32): 7866-7877.
[112] [112] ODABA?? ?, Y?LD?R?M R. Performance analysis of perovskite solar cells in 2013-2018 using machine-learning tools[J]. Nano Energy, 2019, 56: 770-791.
[113] [113] LI J, PRADHAN B, GAUR S, et al. Predictions and strategies learned from machine learning to develop high-performing perovskite solar cells[J]. Adv Energy Mater, 2019, 9(46): 1901891.
[114] [114] FENG H J, MA P. Machine learning prediction of 2D perovskite photovoltaics and interaction with energetic ion implantation[J]. Appl Phys Lett, 2021, 119(23): 231902.
[115] [115] CAI X, ZHANG Y, SHI Z, et al. Discovery of lead-free perovskites for high-performance solar cells via machine learning: Ultrabroadband absorption, low radiative combination, and enhanced thermal conductivities[J]. Adv Sci, 2022, 9(4): e2103648.
[116] [116] FAKHARUDDIN A, GANGISHETTY M K, ABDI-JALEBI M, et al. Perovskite light-emitting diodes[J]. Nat Electron, 2022, 5(4): 203-216.
[117] [117] XU L, LIU G, XIANG H, et al. Charge-carrier dynamics and regulation strategies in perovskite light-emitting diodes: From materials to devices[J]. Appl Phys Rev, 2022, 9(2): 021308.
[118] [118] CAO Y, WANG N, TIAN H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures[J]. Nature, 2018, 562(7726): 249-253.
[119] [119] MA D, LIN K, DONG Y, et al. Distribution control enables efficient reduced-dimensional perovskite leds[J]. Nature, 2021, 599(7886): 594-598.
[120] [120] LIN K, XING J, QUAN L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent[J]. Nature, 2018, 562(7726): 245-248.
[121] [121] CHIBA T, HAYASHI Y, EBE H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices[J]. Nat Photon, 2018, 12(11): 681-687.
[122] [122] WANG N, CHENG L, GE R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells[J]. Nat Photon, 2016, 10(11): 699?704.
[123] [123] KARLSSON M, YI Z, REICHERT S, et al. Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes[J]. Nat Commun, 2021, 12(1): 361.
[124] [124] LIU G, ZHANG S, XU L, et al. Recent advances of eco-friendly quantum dots light-emitting diodes for display[J]. Prog Quant Electron, 2022: 100415.
[125] [125] ZHAO B, BAI S, KIM V, et al. High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes[J]. Nat Photoni, 2018, 12(12): 783-789.
[126] [126] JIANG J, CHU Z, LI J Z, et al. Red perovskite light-Emitting diodes with efficiency exceeding 25% realized by co-spacer cations [J]. Adv Mater, 2022, 34(36): 2204460.
[127] [127] ZHANG L, LI N, LIU D, et al. Deep learning for additive screening in perovskite light-emitting diodes[J]. Angew Chem Int Ed Engl, 2022, 61(37): e202209337.
[128] [128] KIRMAN J, JOHNSTON A, KUNTZ D A, et al. Machine- learning-accelerated perovskite crystallization[J]. Matter, 2020, 2(4): 938-947.
[129] [129] BRESOLIN B M, PARK Y, BAHNEMANN D. Recent progresses on metal halide perovskite-based material as potential photocatalyst[J]. Catalysts, 2020, 10(6): 709.
[130] [130] KUMAR A, KUMAR A, KRISHNAN V. Perovskite oxide based materials for energy and environment-oriented photocatalysis[J]. ACS Catal, 2020, 10(17): 10253-10315.
[131] [131] ZHAO Y, LI Y, SUN L. Recent advances in photocatalytic decomposition of water and pollutants for sustainable application[J]. Chemosphere, 2021, 276: 130201.
[132] [132] HUYNH K A, NGUYEN D L T, NGUYEN V H, et al. Halide perovskite photocatalysis: Progress and perspectives[J]. J Chem Technol Biot, 2020, 95(10): 2579-2596.
[133] [133] HUANG Y, LIU J, DENG Y, et al. The application of perovskite materials in solar water splitting[J]. J Semicond, 2020, 41(1): 011701.
[134] [134] DUBOSE J T, KAMAT P V. Efficacy of perovskite photocatalysis: Challenges to overcome[J]. ACS Energy Lett, 2022, 7(6): 1994-2011.
[135] [135] NASSAR I M, WU S, LI L, et al. Facile preparation of n-type LaFeO3 perovskite film for efficient photoelectrochemical water splitting[J]. Chem Select, 2018, 3(3): 968-972.
[136] [136] SHI L, CHANG D, JI X, et al. Using data mining to search for perovskite materials with higher specific surface area[J]. J Chem Inf Model, 2018, 58(12): 2420-2427.
[137] [137] TAO Q, LU T, SHENG Y, et al. Machine learning aided design of perovskite oxide materials for photocatalytic water splitting[J]. J Energy Chem, 2021, 60: 351-359.
[138] [138] TAO Q, CHANG D, LU T, et al. Multiobjective stepwise design strategy-assisted design of high-performance perovskite oxide photocatalysts[J]. J Phys Chem C, 2021, 125(38): 21141-21150.
Get Citation
Copy Citation Text
HU Yang, ZHANG Shengli, ZHOU Wenhan, LIU Gaoyu, XU Lili, YIN Wanjian, ZENG Haibo. Studies on Perovskite Material and Its Applications via Machine Learning[J]. Journal of the Chinese Ceramic Society, 2023, 51(2): 452
Special Issue:
Received: Sep. 21, 2022
Accepted: --
Published Online: Mar. 11, 2023
The Author Email: