Laser & Optoelectronics Progress, Volume. 61, Issue 14, 1437014(2024)

Combination of CNN and Transformer for Lesion-Guided Honeycomb Lung CT Image Recognition

Bingqian Yang, Xiufang Feng*, Yunyun Dong, and Yuanrong Zhang
Author Affiliations
  • School of Software, Taiyuan University of Technology, Jinzhong 030600, Shanxi , China
  • show less
    Figures & Tables(17)
    Overall architecture of the model
    Channel-spatial attention module
    Lesion signal generation module
    Example of the lesion areas
    Architecture of the Transformer layer
    Example of data augmentation
    Classification performance of the proposed model
    Honeycomb lung heat maps under different conditions
    Confusion matrix of honeycomb lung dataset
    Confusion matrix of COVID-CT dataset
    Comparison of heat maps of ablation experiments
    • Table 1. Modified ResNet18 structure

      View table

      Table 1. Modified ResNet18 structure

      LayerConv1Conv2Conv3Conv4
      Input224×224×3112×112×6464×64×12832×32×256
      Kernel 3×3,643×3,64×2 3×3,1283×3,128×23×3,2563×3,256×2 3×3,5123×3,512×2
      Output112×112×6464×64×12832×32×25616×16×512
    • Table 2. Honeycomb lung dataset partition

      View table

      Table 2. Honeycomb lung dataset partition

      TypeTrainingValidationTest
      Normal lung633921132113
      Honeycomb lung606320202020
    • Table 3. COVID-19 dataset partition

      View table

      Table 3. COVID-19 dataset partition

      TypeTrainingValidationTest
      Normal Lung359961184212245
      Pneumonia2549674007395
      COVID-198228662446018
    • Table 4. Classification results of deep learning algorithm on honeycomb lung dataset

      View table

      Table 4. Classification results of deep learning algorithm on honeycomb lung dataset

      ModelRaccuracyRprecisionRsensitivityRspecificitysF1
      AlexNet86.7184.0888.2285.4086.10
      VGG1690.1690.1589.8490.5389.99
      ResNet10193.4494.1692.5694.3193.35
      DenseNet12195.3793.9696.4994.4195.21
      ResGNet-C94.8593.9295.4894.2694.69
      ViT89.3389.0289.2489.5089.13
      CMT-S95.8295.9995.4796.1495.73
      TransCNNNet97.2896.9397.4697.0897.19
      TransSEResNet98.5598.8698.1398.9098.49
      Proposed model99.6799.4199.9099.4399.64
    • Table 5. Classification results of deep learning algorithm on COVID-CT dataset

      View table

      Table 5. Classification results of deep learning algorithm on COVID-CT dataset

      ModelRaccuracyRprecisionRsensitivityRspecificitysF1
      AlexNet94.8295.0087.5098.6091.10
      VGG1696.2194.6992.7798.3793.72
      ResNet10196.5394.9993.0697.1693.08
      DenseNet12196.5794.5392.8498.4093.68
      ResGNet-C96.6296.2197.3395.9196.65
      ViT96.6095.3093.8093.2094.60
      CMT-S97.0097.7497.1399.3097.43
      TransCNNNet96.7397.4597.7696.0196.36
      TranSE-ResNet96.7697.1196.6198.5596.85
      Proposed model97.0898.5897.9598.7098.26
    • Table 6. Comparison results of ablation experiments

      View table

      Table 6. Comparison results of ablation experiments

      BaselineMHCAMSELSGRaccuracy /%
      94.28
      97.31
      98.52
      99.67
    Tools

    Get Citation

    Copy Citation Text

    Bingqian Yang, Xiufang Feng, Yunyun Dong, Yuanrong Zhang. Combination of CNN and Transformer for Lesion-Guided Honeycomb Lung CT Image Recognition[J]. Laser & Optoelectronics Progress, 2024, 61(14): 1437014

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Dec. 18, 2023

    Accepted: Mar. 4, 2024

    Published Online: Jul. 8, 2024

    The Author Email: Xiufang Feng (fengxiufang@tyut.edu.cn)

    DOI:10.3788/LOP232688

    CSTR:32186.14.LOP232688

    Topics