Laser & Optoelectronics Progress, Volume. 62, Issue 14, 1415007(2025)

DySC-YOLOv8: Pollutant Identification Algorithm Designed for Building Facade

Zhijun Gao, Kexun Li*, and Zhenbo Li
Author Affiliations
  • School of Electrical and Control Engineering, Shenyang Jianzhu University, Shenyang 110168, Liaoning , China
  • show less
    Figures & Tables(13)
    Structure of DySC-YOLOv8 model
    Structures of DySample
    Structure of SCAM module
    Schematic diagram of parameters for SIoU loss function
    Partial images of self-made dataset
    Training results of mAP@0.5 before and after model improving
    Comparison of accuracies for different detection algorithms
    Comparison of detection results between YOLOv8n and DySC-YOLO. (a) Original images; (b) detection results by YOLOv8n;(c) detection results by DySC-YOLOv8
    • Table 1. Set of hyperparameters

      View table

      Table 1. Set of hyperparameters

      HyperparameterValue
      Learning rate0.01
      Momentum0.937
      Weight decay0.0005

      Batch size

      Epoch

      8

      300

    • Table 2. Results of ablation experiments

      View table

      Table 2. Results of ablation experiments

      ModelmAP@0.5 /%Params /106FLOPs /109Detection speed /(frame·s-1
      YOLOv8n88.43.018.192
      YOLOv8n+DySample91.23.018.190
      YOLOv8n+ SCAM88.92.787.693
      YOLOv8n+SIoU89.13.018.1101
      YOLOv8n+DySample+SIoU93.53.018.189
      YOLOv8n+DySample+SCAM89.72.787.495
      YOLOv8n+SCAM+SIoU94.42.767.694
      YOLOv8n+DySample+SCAM+SIoU94.52.717.393
    • Table 3. Results of different detection algorithms

      View table

      Table 3. Results of different detection algorithms

      AlgorithmP /%mAP@0.5 /%Params /106FLOPs /109Detection speed /(frame·s-1

      SSD

      FasterR-CNN

      YOLOv5s

      86.2

      83.1

      88.9

      72.7

      78.6

      86.3

      30.30

      41.30

      7.21

      61.5

      271.2

      15.4

      48

      19

      75

      YOLOv8n

      YOLOv8-FN-T0

      89.3

      94.3

      91.9

      92.7

      3.15

      2.91

      105.1

      4.4

      70

      95

      YOLOv8s92.495.511.1026.784
      DySC-YOLOv896.494.93.427.296
    • Table 4. Experimental results based on UAV-DT dataset

      View table

      Table 4. Experimental results based on UAV-DT dataset

      AlgorithmPRmAP@0.5mAP@0.5∶0.95
      YOLOv5s90.482.389.955.7
      YOLOv789.983.089.456.2
      YOLOv8-FN-T093.187.594.463.1
      YOLOv8n92.887.694.262.2
      DySC-YOLOv893.289.595.765.3
    • Table 5. Experimental results based on DIOR dataset

      View table

      Table 5. Experimental results based on DIOR dataset

      AlgorithmPRmAP@0.5mAP@0.5∶0.95
      YOLOv5s79.172.377.146.3
      YOLOv782.867.273.650.8
      YOLOv8-FN-T083.971.178.053.2
      YOLOv8n84.573.179.954.4
      DySC-YOLOv885.174.481.256.1
    Tools

    Get Citation

    Copy Citation Text

    Zhijun Gao, Kexun Li, Zhenbo Li. DySC-YOLOv8: Pollutant Identification Algorithm Designed for Building Facade[J]. Laser & Optoelectronics Progress, 2025, 62(14): 1415007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Dec. 5, 2024

    Accepted: Feb. 4, 2025

    Published Online: Jul. 4, 2025

    The Author Email: Kexun Li (likexun2001@163.com)

    DOI:10.3788/LOP242375

    CSTR:32186.14.LOP242375

    Topics