Laser & Optoelectronics Progress, Volume. 56, Issue 16, 161004(2019)

Multimodal Image Fusion Based on Generative Adversarial Networks

Xiaoli Yang1, Suzhen Lin1、*, Xiaofei Lu2, Lifang Wang1, Dawei Li1, and Bin Wang1
Author Affiliations
  • 1 School of Big Data, North University of China, Taiyuan, Shanxi 0 30051, China
  • 2 Jiuquan Satellite Launch Center, Jiuquan, Gansu 735000, China
  • show less
    Figures & Tables(15)
    Structure of residual block
    Framework of method
    Network structure of generative model
    Network structure of discriminative model
    Pre-selection maps of label images. (a) Longwave infrared; (b) shortwave infrared; (c) visible light; (d) LP; (e) DWT; (f) NSCT; (g) NSST
    Effect of learning rate on generator loss
    Effect of learning rate on discriminator loss
    Effect of different λ on image quality. (a) λ=0; (b) λ=0.01; (c) λ=0.1; (d) λ=1
    Effect of different λ on generator loss
    Effect of λ on objective evaluation index of fused image. (a) The first set of fused images; (b) the second set of fused images; (c) the third set of fused images
    Image fusion results. (a) Longwave infrared; (b) shortwave infrared; (c) visible light; (d) DTCWT_SR; (e) NSST_NSCT; (f) CNN; (g) CSR; (h) proposed method
    • Table 1. Parameters of generator

      View table

      Table 1. Parameters of generator

      LayerFilter size /stepOutput size
      Conv13×3 /1128×128×64
      Res(7 units)3×3 /1128×128×64
      3×3 /1128×128×64
      Conv93×3 /1128×128×256
      Conv103×3 /1128×128×1
    • Table 2. Parameters of discriminator

      View table

      Table 2. Parameters of discriminator

      LayerFilter size/stepOutput size
      Conv13×3 /1128×128×64
      Conv23×3 /264×64×128
      Conv33×3 /232×32×256
      Conv43×3 /216×16×512
      Conv53×3 /116×16×256
      Conv61×1 /116×16×128
      Res1×1 /116×16×64
      3×3 /116×16×64
      3×3 /116×16×128
      Fc-1
    • Table 3. Label image selection table

      View table

      Table 3. Label image selection table

      Fusion methodSDAGConCCIEMIVIFF
      LP49.0194.21140.8120.4247.2235.6080.466
      DWT44.7723.82636.6500.3427.1755.4150.442
      NSCT41.1234.06134.8160.4376.9535.2220.469
      NSST40.9044.14934.9020.4416.9325.2010.467
    • Table 4. Comparison of evaluation index of fusion results

      View table

      Table 4. Comparison of evaluation index of fusion results

      ImageFusion methodSDAGConCCIEMIVIFF
      No. 1DTCWT_SR35.4713.15023.9160.4096.9684.8690.505
      NSCT_NSST19.6213.16311.9110.4066.1472.8530.522
      CNN34.9282.88523.2540.4086.9614.6100.363
      CSR12.0811.9537.5700.4185.5342.6630.359
      Proposed method38.0118.12927.7930.4316.9772.5520.301
      No. 2DTCWT_SR26.2747.24525.9270.1435.9841.4920.367
      NSCT_NSST23.2687.27014.8150.3066.0261.5420.376
      CNN29.6964.98522.7540.0162.3731.3120.211
      CSR25.2715.54315.9890.3226.0322.5400.322
      Proposed method25.5274.37413.7310.3816.0572.5670.461
      No. 3DTCWT_SR21.8545.18715.0380.4276.4751.2560.415
      NSCT_NSST22.6925.37015.71660.4716.8061.5420.419
      CNN38.5904.96125.6090.4416.9102.7990.392
      CSR23.0543.86815.7260.4996.4502.3910.382
      Proposed method41.0894.31030.9290.5936.9383.0930.420
      No. 4DTCWT_SR47.4923.54523.1760.4226.3152.7730.298
      NSCT_NSST35.3733.60515.1360.4456.8312.5310.317
      CNN54.5973.16329.7780.4366.2832.8620.351
      CSR38.5872.21717.6560.4526.7963.3310.375
      Proposed method32.4008.45222.7670.4576.9382.0550.384
      No. 5DTCWT_SR40.0065.05832.5540.0257.3082.9760.407
      NSCT_NSST24.8865.14718.0590.4896.6151.8120.428
      CNN40.5593.95134.3310.2717.3162.1330.346
      CSR26.2392.52620.7070.5156.6423.0070.277
      Proposed method40.6775.97433.8900.5697.3212.1060.473
      No. 6DTCWT_SR54.4583.03844.0200.0427.7442.9860.524
      NSCT_NSST25.9903.04718.7280.4556.6862.2540.552
      CNN45.5492.53835.2690.1937.3331.8390.208
      CSR28.8031.52321.1250.4296.6912.8580.160
      Proposed method46.4255.64336.4620.4767.4532.9930.648
      No. 7DTCWT_SR54.8483.55536.9840.0447.4203.4850.484
      NSCT_NSST27.5273.55021.4900.4606.8131.8070.504
      CNN45.8802.94537.1290.3347.1042.6270.440
      CSR27.8531.83421.1680.4726.7012.9680.326
      Proposed method47.0244.25937.5230.5007.4872.4610.606
      No. 8DTCWT_SR55.8902.94047.0620.7714.3573.6120.169
      NSCT_NSST52.6104.87247.6470.8684.8323.9060.380
      CNN87.2366.20873.9070.7215.6883.9330.294
      CSR54.2084.75347.2140.7944.2453.3830.285
      Proposed method92.15215.27976.8700.9434.3334.9470.505
    Tools

    Get Citation

    Copy Citation Text

    Xiaoli Yang, Suzhen Lin, Xiaofei Lu, Lifang Wang, Dawei Li, Bin Wang. Multimodal Image Fusion Based on Generative Adversarial Networks[J]. Laser & Optoelectronics Progress, 2019, 56(16): 161004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jan. 9, 2019

    Accepted: Mar. 22, 2019

    Published Online: Aug. 5, 2019

    The Author Email: Suzhen Lin (lsz@nuc.edu.cn)

    DOI:10.3788/LOP56.161004

    Topics