Chinese Journal of Lasers, Volume. 46, Issue 10, 1001008(2019)

Numerical Simulation of 3.5 μm Dual-Wavelength Pumped Er∶ZBLAN Fiber Lasers

Kunpeng Luan, Yanlong Shen*, Mengmeng Tao, Hongwei Chen, Chao Huang, Aiping Yi, and Ke Huang
Author Affiliations
  • State Key Laboratory of Laser Interaction with Matter, Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024, China
  • show less
    Figures & Tables(12)
    Schematic of the energy levels relevant to the 3.5 μm Er3+∶ZBLAN fiber laser
    Comparison between experimental results and simulations. (a) H2016 experimental results and simulations in this paper; (b) M2017 experimental results and simulations in this paper
    Simulation results of a typical 3.5 μm laser oscillating generation process
    Particle density, signal and pump power at different fiber positions. (a) Particle density of each energy level when continuous oscillation is steady; (b) signal and pump power at each fiber element
    Influence of overlap factor on the 3.5 μm laser power. (a) Γp1; (b) Γp2
    3.5 μm laser power as a function of 975 nm pump power. (a) With ESA2; (b) without ESA2; (c) comparison between with and without ESA2 when P2=6 W
    3.5 μm laser power as a function of 1975 nm pump power
    Impact of output coupler reflectivity on 3.5 μm laser power
    3.5 μm laser output power and efficiencies with different fiber lengths and output coupler reflectivities. (a) Roc=20%; (b) Roc=30%; (c) Roc=40%; (d) slope efficiencies and pump thresholds
    Impacts of interionic interaction on 3.5 μm laser power. (a) W1103; (b) W2206; (c) W4251; (d) W5031
    • Table 1. Spectroscopic constant parameters of Er3+[16-17]

      View table

      Table 1. Spectroscopic constant parameters of Er3+[16-17]

      ParametersValue
      τ1 /ms9.9
      τ2 /ms7.9
      τ3 /μs8.0
      τ4 /μs177.0
      τ5 /μs530.0
      τ6 /μs5.0
      β101.0
      β21, β200.182, 0.818
      β32, β31, β300.999, 0,0.001
      β43, β42, β41, β400.808, 0.008, 0.009, 0.175
      β54, β53, β52, β51, β500.285, 0.029, 0.014, 0.193, 0.479
      β65, β600.990, 0.010
    • Table 2. Variable spectroscopic parameters and fiber parameters[4,16-17]

      View table

      Table 2. Variable spectroscopic parameters and fiber parameters[4,16-17]

      ParametersValue
      NEr /(1026 m-3)1.6
      L /m2.83.4
      dcore /(10-6 m)16.516.5
      dclad /(10-6 m)250170
      λp1 /(10-9 m)977964.8
      λp2 /(10-9 m)19731976
      λs1 /(10-6 m)2.8-
      λs2 /(10-6 m)3.473.44
      σab02 /(10-26 m2)19.53.77
      σab26 /(10-26 m2)9.326.4
      σab34 /(10-26 m2)-15
      σab36 /(10-26 m2)13.521
      σab46 /(10-26 m2)-7
      σab24 /(10-26 m2)30
      σem20 /(10-26 m2)16.11.64
      σem62 /(10-26 m2)21.131.9
      σem63 /(10-26 m2)17.4-
      σem42 /(10-26 m2)36.1
      σem21 /(10-26 m2)45-
      σem43 /(10-26 m2)12
      αs2 /m-10.035
      W1103 /(10-24 m3·s-1)0.413
      W2206 /(10-24 m3·s-1)0.081.6
      W5031 /(10-24 m3·s-1)0.14.8
      W4251 /(10-24 m3·s-1)1725
    Tools

    Get Citation

    Copy Citation Text

    Kunpeng Luan, Yanlong Shen, Mengmeng Tao, Hongwei Chen, Chao Huang, Aiping Yi, Ke Huang. Numerical Simulation of 3.5 μm Dual-Wavelength Pumped Er∶ZBLAN Fiber Lasers[J]. Chinese Journal of Lasers, 2019, 46(10): 1001008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Apr. 8, 2019

    Accepted: Jun. 5, 2019

    Published Online: Oct. 25, 2019

    The Author Email: Shen Yanlong (shenyanlong@nint.ac.cn)

    DOI:10.3788/CJL201946.1001008

    Topics