Chinese Journal of Lasers, Volume. 51, Issue 13, 1310003(2024)
Point‑Voxel Consistency Constraint Network for LiDAR Point Cloud Classification Under Urban Scenes
Fig. 4. Overall visualization of the classification results on the Toronto3D dataset. (a) Point cloud (RGB); (b) ground truth; (c) PVCC-Net; (d) RandLA-Net; (e) PVCNN
Fig. 5. Local visualization of classification results on the Toronto3D dataset. (a) Point cloud (RGB); (b) ground truth; (c) PVCC-Net; (d) RandLA-Net; (e) PVCNN
Fig. 6. OA and mIoU of different methods on the Semantic3D dataset. (a) OA; (b) mIoU
Fig. 7. Visualization of classification results on the Semantic3D dataset. (a) Point cloud (RGB); (b) PVCC-Net; (c) RandLA-Net;
Fig. 8. Normalized confusion matrix of classification results on the Semantic3D dataset
Fig. 9. OA and mIoU of different methods on the SensatUrban dataset. (a) OA; (b) mIoU
Fig. 10. Visualization of classification results on the SensatUrban dataset. (a) Point cloud (RGB); (b) PVCC-Net; (c) RandLA-Net;
|
|
|
|
|
|
Get Citation
Copy Citation Text
Huchen Li, Haiyan Guan, Xiangda Lei, Nannan Qin, Huan Ni. Point‑Voxel Consistency Constraint Network for LiDAR Point Cloud Classification Under Urban Scenes[J]. Chinese Journal of Lasers, 2024, 51(13): 1310003
Category: remote sensing and sensor
Received: Nov. 16, 2023
Accepted: Jan. 4, 2024
Published Online: Jul. 2, 2024
The Author Email: Haiyan Guan (guanhy.nj@nuist.edu.cn)
CSTR:32183.14.CJL231411