Laser & Optoelectronics Progress, Volume. 60, Issue 7, 0700003(2023)

Research Progress of Tm-Doped Pulsed Solid-State Lasers in 2 μm Band

Yuqing Fan1,2,3, Xiangchun Shi1,2,3、*, Jing Liu1,2, Chuanpeng Qian1,2, Ting Yu1,2,3, and Xisheng Ye1,2,3
Author Affiliations
  • 1Laboratory of High Power Fiber Laser Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 3College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(8)
    Energy level structure diagram of Tm3+[10]
    Tm∶YAG laser device. (a) Single laser module; (b) bonded Tm∶YAG crystal; (c) Tm∶YAG laser structure[19]
    Tm∶YAP laser with electro-optical cavity-dumped[42]
    Large energy Tm: YLF experimental device
    • Table 1. Commonly doped Tm3+ crystal characteristics[12-14]

      View table

      Table 1. Commonly doped Tm3+ crystal characteristics[12-14]

      Gain mediumTm∶YAGTm∶YAPTm∶YLF
      Crystal structureCubic systemOrthorhombic systemTetragonal system
      Density ρ /(g.cm-34.565.353.99
      Melting temperature /K222018701098
      Hardness by Moos8.25-8.58.5-94-5
      Refractive index n1.8123

      a:1.9048

      b:1.9185

      c:1.9270

      1.44
      Thermal conductivity /(W·cm-1·K-10.130.11

      a:0.072

      c:0.058

      Upper level lifetime τ2 /ms114.4-4.914
      Pump wavelength λp /nm785795792
      Absorption cross-section σa /(10-20cm20.650.910.35
      Emission cross-section σe /(10-20cm20.220.50.23
      Laser wavelength λL /nm2.011.94,1.991.89,1.91,1.94
    • Table 2. Development of Tm∶YAG pulsed solid-state laser

      View table

      Table 2. Development of Tm∶YAG pulsed solid-state laser

      YearOperation modeRepetition frequencyOutput powerPeak powerPulse energyPulse width
      199216Actively mode-locked300 MHz70 mW6.7 W0.23 nJ35 ps
      200917AO Q-switched30 kHz5.1 W566.7 W0.17 mJ300 ns
      201118AO Q-switched15 Hz30 mW5.6 kW2.0 mJ356.2 ns
      201219AO Q-switched10 kHz171.4 W17.1 kW20 mJ1 µs
      201326100 Hz18 W900 W180 mJ200 μs
      201420Acousto optically cavity dumped200 kHz598 mW54.6 W2.95 μJ54 ns
      201521Passively mode-locked98.7 MHz158 mW571.7 W1.6 nJ2.8 ps
      201522AO Q-switched10 Hz1.3 W800 kW128 mJ160 ns
      201527Passively mode-locked89 MHz150 mW561.8 W1.7 nJ3 ps
      201728AO Q-switched1 kHz20.7 W246.4 kW20.7 mJ84 ns
      201729Self-mode locked3.376 GHz1.2 W120.1 W0.36 nJ3 ps
      201830Passively Q-switched49.36 kHz421 mW20.2 W8.53 μJ423 ns
      201831Passively Q-switched57.67 kHz272 mW12.6 W4.8 μJ382 ns
      201932AO Q-switched200 Hz1.37 W18.6 kW6.83 mJ367.7 ns
      202033Passively Q-switched124.5 kHz842 mW19 W6.76 μJ355 ns
      202023Passively mode-locked232.2 MHz200 mW3.1 W0.86 nJ280 ps
      202034Passively mode-locked97.7 MHz117 mW25.1 W1.2 nJ47.9 ps
      202135Passively mode-locked203.1 MHz320mW2.7 W1.58 nJ580.5 ps
      202136Passively Q-switched101.8 kHz263 mW5.8 W2.3 μJ398 ns
      202124EO Q-switched1 Hz2.53 mW3.9 kW2.53 mJ650 ns
      202137Passively Q-switched119.3 kHz251 mW6.5 W2.1 μJ322.6 ns
      202125AO Q-switched100 Hz0.36 W3.6 mJ
      202138Passively mode-locked208.5 MHz102 mW2.19 W0.49 nJ224 ps
    • Table 3. Development of Tm∶YAP pulsed solid-state laser

      View table

      Table 3. Development of Tm∶YAP pulsed solid-state laser

      YearOperation modeRepetition frequencyOutput powerPeak powerPulse energyPulse width
      200440AO Q-switched5 kHz35 W93.3 kW7 mJ75 ns
      201141Passively mode-locked26.47 kHz480 mW18.1 μJ
      201448Acousto optically cavity dumped200 kHz1.28 W148.8 W6.4 μJ43 ns
      201542Electro-optic cavity dumped100 kHz3.02 W4.3 kW30.2 μJ7.1 ns
      201843Passively mode-locked88.7 MHz730 mW4.8 kW8.2 nJ1.7 ps
      201944AO Q-switched1 kHz16.4 W430.1 kW16.4 mJ38.04 ns
      201949Passively mode-locked96.55 MHz880 mW19.03 W9.11 nJ478.83 ps
      201950Passively Q-switched255 kHz2.2 W15 W8.7 μJ579 ns
      201951Passively Q-switched101 kHz542 mW10.1 W5.4 μJ533 ns
      201945Doubly Q-switched1 kHz274 mW1.1 kW274 μJ239 ns
      201952Doubly Q-switched62.7 kHz350 mW22.4 W5.6 μJ249.4 ns
      202053Passively Q-switched95 kHz957 mW11.5 W10.1 μJ857.5 ns
      202054AO Q-switched1 kHz230 mW4.6 kW230 μJ50 ns
      202046EO Q-switched10 kHz21.96 W107.3 kW2.20 mJ20.64 ns
      202047EO Q-switched200 Hz630 mW185.3 kW3.15 mJ17 ns
      202055Passively Q-switched113.7 kHz1.29 W28.9 W11.3 μJ392.7 ns
      202056Passively Q-switched24 kHz100 mW1.55 W3.8 μJ2.5 μs
      202057EO Q-switched1 kHz2 W33.3 kW2 mJ60 ns
      202058Passively Q-switched71 kHz451 mW8.58 W6.35 μJ740 ns
      202159AO Q-switched10 kHz33.2 W16.6 kW3.3 mJ200 ns
      202160Passively Q-switched88.28 kHz0.97 W24.4 W11.2 μJ459.0 ns
      202161AO Q-switched1 kHz2.3 W80 kW2.3 mJ29.5 ns
      202162Passively Q-switched105.1 kHz2.05 W21.2 W19.5 μJ916 ns
      202163Doubly Q-switched100 Hz420 mW111.8 kW4.2 mJ38 ns
      202164Passively Q-switched98.59 kHz1.37 W6.4 W13.85 μJ2.16 μs
      202165Passively Q-switched175 kHz0.81 W2.7W4.6 μJ1.69 μs
      202166Passively mode-locked70.2 MHz630 mW57 W8.9 nJ156 ps
      202167Doubly Q-switched200 Hz151 mW34.3 kW755 μJ22 ns
      202168Passively Q-switched70.08 kHz153 mW2.67 W2.18 μJ821 ns
      202269EO Q-switched1 kHz1.76 W88 kW1.76 mJ20 ns
      202270Passively Q-switched49 kHz280 mW6.6 W5.7 μJ0.86 μs
      202271Passively Q-switched95 kHz220 mW10.5 W2.3 μJ220 ns
    • Table 4. Development of Tm∶YLF pulsed solid-state laser

      View table

      Table 4. Development of Tm∶YLF pulsed solid-state laser

      YearOperation modeRepetition frequencyOutput powerPeak powerPulse energyPulse width
      200273Free-running operation310 mJ
      200774AO Q-switched300 kW4.5 mJ15 ns
      201775Passively mode-locked100 MHz165 mW17.6 W1.65 nJ94 ps
      201776Passively mode-locked41.5 MHz14.4 mW675.1 W0.35 nJ514 fs
      201880Passively mode-locked94 MHz95 mW32.6 W1.01 nJ31 ps
      201981AO Q-switched1 kHz1.97 W53.2 kW1.97 mJ37 ns
      201982Passively Q-switched76 kHz6.3 W27.5 W85.2 μJ3.1 μs
      201983Passively Q-switched82 kHz1.05 W30 W12.8 μJ427 ns
      201984Passively mode-locked54.1 MHz1.04 W179.7 W19 nJ107 ps
      202085AO Q-switched9 kHz25 W2.7 kW2 mJ740 ns
      202086EO Q-switched1 kHz1.4 W82.4 kW1.4 mJ17 ns
      202077Passively Q-switched

      1 kHz

      10.8 W

      280 kW

      350 kW

      10.8 mJ

      10.2 mJ

      38 ns

      29 ns

      202087Passively Q-switched6.67 kHz320 mW57 W48 μJ843 ns
      202188EO Q-switched500 Hz625 mW65.8 kW1.25 mJ19 ns
      202178Electro-optic cavity dumped3.88 J
      202178free-running operation38.1 J
      202189AO Q-switched5 kHz7.32 W21.5 kW1.4 mJ68 ns
    Tools

    Get Citation

    Copy Citation Text

    Yuqing Fan, Xiangchun Shi, Jing Liu, Chuanpeng Qian, Ting Yu, Xisheng Ye. Research Progress of Tm-Doped Pulsed Solid-State Lasers in 2 μm Band[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0700003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jan. 28, 2022

    Accepted: Mar. 29, 2022

    Published Online: May. 24, 2023

    The Author Email: Xiangchun Shi (shixc@siom.ac.cn)

    DOI:10.3788/LOP220654

    Topics