Chinese Journal of Lasers, Volume. 49, Issue 15, 1507302(2022)

Application of Auto-Focusing Technology Based on Improved U-Net in Cell Imaging

Liu Yang, Huaying Wang, Zhao Dong, Haijun Guo*, Jieyu Wang, and Wenjian Wang
Author Affiliations
  • College of Mathematical Science and Engineering, Hebei University of Engineering, Handan 056038, Hebei, China
  • show less
    References(26)

    [1] Toda K, Tamamitsu M, Nagashima Y et al. Molecular contrast on phase-contrast microscope[J]. Scientific Reports, 9, 9957(2019).

    [2] Rivenson Y, Wang H, Wei Z et al. Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning[J]. Nature Biomedical Engineering, 3, 466-477(2019).

    [3] Maurer C, Jesacher A, Bernet S et al. Phase contrast microscopy with full numerical aperture illumination[J]. Optics Express, 16, 19821-19829(2008).

    [4] Bian Y X, Jiang Y N, Huang Y R et al. Smart-phone phase contrast microscope with a singlet lens and deep learning[J]. Optics & Laser Technology, 139, 106900(2021).

    [5] Bian Y X, Jiang Y N, Deng W J et al. Deep learning virtual Zernike phase contrast imaging for singlet microscopy[J]. AIP Advances, 11, 065311(2021).

    [6] Niu M X, Luo G, Shu X et al. Portable quantitative phase microscope for material metrology and biological imaging[J]. Photonics Research, 8, 1253-1259(2020).

    [7] Liu Z F, Yang Y Z, Fang Y et al. Deep learning-based virtual phase contrast imaging method[J]. Acta Optica Sinca, 41, 2217001(2021).

    [8] Mehta S B, Sheppard C J R. Partially coherent image formation in differential interference contrast (DIC) microscope[J]. Optics Express, 16, 19462-19479(2008).

    [9] Chen J Z, Lin D Y, Huang J H et al. Research progress of phase contrast methods for high-resolution X-ray microscope[J]. Laser & Optoelectronics Progress, 50, 060004(2013).

    [10] Herring G K, Hesselink L. Holographic X-ray detection: a method for high resolution, high efficiency X-ray detection with differential phase contrast[J]. Applied Physics Letters, 118, 261105(2021).

    [11] Fan Y, Sun J S, Chen Q et al. Optimal illumination scheme for isotropic quantitative differential phase contrast microscopy[J]. Photonics Research, 7, 890-904(2019).

    [12] de Oliveira C S, González A T, Hedtke T et al. Direct three-dimensional imaging for morphological analysis of electrospun fibers with laboratory-based Zernike X-ray phase-contrast computed tomography[J]. Materials Science and Engineering: C, 115, 111045(2020).

    [13] Pan A, Zuo C, Yao B L. High-resolution and large field-of-view Fourier ptychographic microscopy and its applications in biomedicine[J]. Reports on Progress in Physics, 83, 096101(2020).

    [14] Xu J, Kong Y, Jiang Z L et al. Accelerating wavefront-sensing-based autofocusing using pixel reduction in spatial and frequency domains[J]. Applied Optics, 58, 3003-3012(2019).

    [15] Bopp M A, Jia Y, Li L et al. Fluorescence and photobleaching dynamics of single light-harvesting complexes[J]. Proceedings of the National Academy of Sciences of the United States of America, 94, 10630-10635(1997).

    [16] Pinkard H, Phillips Z, Babakhani A et al. Deep learning for single-shot autofocus microscopy[J]. Optica, 6, 794-797(2019).

    [17] Luo Y L, Huang L Z, Rivenson Y et al. Single-shot autofocusing of microscopy images using deep learning[J]. ACS Photonics, 8, 625-638(2021).

    [18] Zuo C, Feng S J, Zhang X Y et al. Deep learning based computational imaging: status, challenges, and future[J]. Acta Optica Sinica, 40, 0111003(2020).

    [19] Wang Y T, Zhou H Q, Yan J X et al. Advances in computational optics based on deep learning[J]. Chinese Journal of Lasers, 48, 1918004(2021).

    [20] Wang F, Wang H, Bian Y M et al. Applications of deep learning in computational imaging[J]. Acta Optica Sinica, 40, 0111002(2020).

    [21] Li H Y, Qu L Y, Hua Z J et al. Deep learning based fluorescence microscopy imaging technologies and applications[J]. Laser & Optoelectronics Progress, 58, 1811007(2021).

    [22] Xiao K, Tian L J, Wang Z Y. Fast super-resolution fluorescence microscopy imaging with low signal-to-noise ratio based on deep learning[J]. Chinese Journal of Lasers, 47, 1007002(2020).

    [23] Isola P, Zhu J Y, Zhou T H et al. Image-to-image translation with conditional adversarial networks[C], 5967-5976(2017).

    [24] Shi X S, Xing F Y, Xu K D et al. Loss-based attention for interpreting image-level prediction of convolutional neural networks[J]. IEEE Transactions on Image Processing, 30, 1662-1675(2020).

    [25] Zhang Z, Tang Z M, Wang Y et al. Dense residual network: enhancing global dense feature flow for character recognition[J]. Neural Networks, 139, 77-85(2021).

    [26] Zhang S Y, Qi G J, Cao X C et al. Human parsing with pyramidical gather-excite context[J]. IEEE Transactions on Circuits and Systems for Video Technology, 31, 1016-1030(2021).

    Tools

    Get Citation

    Copy Citation Text

    Liu Yang, Huaying Wang, Zhao Dong, Haijun Guo, Jieyu Wang, Wenjian Wang. Application of Auto-Focusing Technology Based on Improved U-Net in Cell Imaging[J]. Chinese Journal of Lasers, 2022, 49(15): 1507302

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Neurophotonics and Optical Regulation

    Received: Dec. 6, 2021

    Accepted: Jan. 28, 2022

    Published Online: Jul. 29, 2022

    The Author Email: Guo Haijun (Eghj6028039@163.com)

    DOI:10.3788/CJL202249.1507302

    Topics