Spectroscopy and Spectral Analysis, Volume. 43, Issue 8, 2407(2023)
Study on the Diagnosis of Breast Cancer by Fluorescence Spectrometry Based on Machine Learning
[1] [1] Li J, Qi D, Hsieh T-C, et al. Pharmacology & Therapeutics, 2021, 223: 107800.
[2] [2] Rosen E L, Eubank W B, Mankoff D A. Radiographics, 2007, 27(Suppl 1): S215
[3] [3] Shang L-W, Ma D-Y, Fu J-J, et al. Biomedical Optics Express, 2020, 11(7): 3673.
[4] [4] Choi J, Sharad G, Inho P, et al. Proc. of SPIE, 2007, 6434: 64340P.
[5] [5] Zhang L, Li L, Tang M, et al. Alexandria Engineering Journal, 2021, 60(1): 897.
[6] [6] Pu Y, Sordillo L A, Yang Y, et al. Optics Letters, 2014, 39(24): 6787.
[7] [7] Sharma S. Aggarwal A, Choudhury T. 1st International Conference on Computational Techniques, Electronics and Mechanical Systems(CTEMS), 2018: 114.
[8] [8] Ehsani R, Drablos F. Cancer Informatics, 2020, https://doi.org/10.1177/1176935120965542.
[9] [9] Xue J, Pu Y, Smith J, et al. Proc. of SPIE, 2018, 10504: 105040L.
[12] [12] Hu Y, Zheng C, Tao W, et al. Journal of Nanoparticle Research, 2020, 22(7): 186.
[13] [13] Mahfouz M A, Shoukry A, Ismail M A. Artificial Intelligence in Medicine, 2021, 111: 101985.
[16] [16] Adem K. Physica A: Statistical Mechanics and Its Applications, 2020, 551: 124591.
[17] [17] Fatima N, Liu L, Hong S, et al. IEEE Access, 2020, 8: 150360.
[18] [18] Khuriwal N, Mishra N. 2018 IEEMA Engineer Infinite Conference (eTechNxT), 2018.
[19] [19] Asri H, Mousannif H, Moatassime H A, et al. Procedia Computer Science, 2016, 83: 1064.
[20] [20] Wang H, Xu P, Zhao J. Alexandria Engineering Journal, 2021, 61(5): 3571.
[21] [21] Li Z, Tan J, Li S, et al. Energy and Buildings, 2019, 183: 222.
Get Citation
Copy Citation Text
CHEN Wen-jing, XU Nuo, JIAO Zhao-hang, YOU Jia-hua, WANG He, QI Dong-li, FENG Yu. Study on the Diagnosis of Breast Cancer by Fluorescence Spectrometry Based on Machine Learning[J]. Spectroscopy and Spectral Analysis, 2023, 43(8): 2407
Received: Apr. 18, 2022
Accepted: --
Published Online: Jan. 11, 2024
The Author Email: