Journal of Synthetic Crystals, Volume. 53, Issue 6, 1061(2024)

Study on the Characteristics of MoO3-x Nanoslot SERS Substrate Prepared by Hydrothermal Method

SHU Min1, LIANG Junhui1、*, CHEN Da1, CHEN Zhao2, and QIN Laishun1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(35)

    [1] [1] SHARMA B, FRONTIERA R R, HENRY A I, et al. SERS: materials, applications, and the future[J]. Materials Today, 2012, 15(1/2): 16-25.

    [2] [2] ALIVISATOS A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271(5251): 933-937.

    [3] [3] BUFFAT P, BOREL J P. Size effect on the melting temperature of gold particles[J]. Physical Review A, 1976, 13(6): 2287-2298.

    [4] [4] DANIEL M C, ASTRUC D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chemical Reviews, 2004, 104(1): 293-346.

    [5] [5] YANG Y M, GAO X N, YANG S J, et al. Synthesis and superior SERS performance of porous octahedron Cu2O with oxygen vacancy derived from MOFs[J]. Journal of Materials Science, 2021, 56(16): 9702-9711.

    [6] [6] ZHOU C L, SUN L F, ZHANG F Q, et al. Electrical tuning of the SERS enhancement by precise defect density control[J]. ACS Applied Materials & Interfaces, 2019, 11(37): 34091-34099.

    [7] [7] CAO Y, LIANG P, DONG Q M, et al. Facile reduction method synthesis of defective MoO2-x nanospheres used for SERS detection with high chemical enhancement[J]. Analytical Chemistry, 2019, 91(13): 8683-8690.

    [8] [8] CONG S, YUAN Y Y, CHEN Z G, et al. Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies[J]. Nature Communications, 2015, 6: 7800.

    [9] [9] GE J P, XU S, LIU L P, et al. A positive-microemulsion method for preparing nearly uniform Ag2Se nanoparticles at low temperature[J]. Chemistry, 2006, 12(13): 3672-3677.

    [10] [10] YU T, JOO J, PARK Y I, et al. Large-scale nonhydrolytic sol-gel synthesis of uniform-sized ceria nanocrystals with spherical, wire, and tadpole shapes[J]. Angewandte Chemie, 2005, 44(45): 7411-7414.

    [11] [11] GLOTZER S C, SOLOMON M J. Anisotropy of building blocks and their assembly into complex structures[J]. Nature Materials, 2007, 6: 557-562.

    [12] [12] PENG J, SHEN J, YU X, et al. Construction of LSPR-enhanced 0D/2D CdS/MoO3-x S-scheme heterojunctions for visible-light-driven photocatalytic H2 evolution [J]. Chinese Journal of Catalysis, 2021, 42(1): 87-96.

    [13] [13] XIE S Y, CHEN D, GU C J, et al. Molybdenum oxide/tungsten oxide nano-heterojunction with improved surface-enhanced Raman scattering performance[J]. ACS Applied Materials & Interfaces, 2021, 13(28): 33345-33353.

    [14] [14] HU S, WANG X. Single-walled MoO3 nanotubes[J]. Journal of the American Chemical Society, 2008, 130(26): 8126-8127.

    [15] [15] LIU Y M, WU Z G, XIAN H H, et al. Preparation and surface enhanced Raman spectroscopy study on titanium nitride/manganese oxide composite films[J]. Journal of Synthetic Crystals, 2019, 48(11): 2050-2055 (in Chinese).

    [16] [16] MA C, WU J W, ZHU L, et al. Trace detection of rhodamine B in infant candy by g-C3N4/Ag nanocomposite as surface-enhanced Raman scattering substrate[J]. Acta Chimica Sinica, 2019, 77(10): 1024-1030 (in Chinese).

    [17] [17] MI Y X, JIA C X, CAO W H, et al. Preparation of Ag-loaded TiO2 core-shell substrate and its high efficiency SERS detection of crystal violet[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(3): 293-298 (in Chinese).

    [18] [18] CONG S, WANG Z, GONG W B, et al. Electrochromic semiconductors as colorimetric SERS substrates with high reproducibility and renewability[J]. Nature Communications, 2019, 10: 678.

    [19] [19] ZHENG X L, WANG X Z, TIAN Q Y, et al. Supercritical CO2 synthesis of Co-doped MoO3-x nanocrystals for multifunctional light utilization[J]. Chemical Communications, 2020, 56(55): 7649-7652.

    [20] [20] KESHAVARZ M, CHOWDHURY A K M R H, KASSANOS P, et al. Self-assembled N-doped Q-dot carbon nanostructures as a SERS-active biosensor with selective therapeutic functionality[J]. Sensors and Actuators B: Chemical, 2020, 323: 128703.

    [21] [21] GAO M S, MIAO P, HAN X J, et al. Hollow transition metal hydroxide octahedral microcages for single particle surface-enhanced Raman spectroscopy[J]. Inorganic Chemistry Frontiers, 2019, 6(9): 2318-2324.

    [22] [22] PATIL M K, GAIKWAD S H, MUKHERJEE S P. Phase- and morphology-controlled synthesis of tunable plasmonic MoO3-x nanomaterials for ultrasensitive surface-enhanced Raman spectroscopy detection[J]. The Journal of Physical Chemistry C, 2020, 124(38): 21082-21093.

    [23] [23] GUAN H M, YI W C, LI T, et al. Low temperature synthesis of plasmonic molybdenum nitride nanosheets for surface enhanced Raman scattering[J]. Nature Communications, 2020, 11: 3889.

    [24] [24] MOURA J V B, SILVEIRA J V, DA SILVA FILHO J G, et al. Temperature-induced phase transition in h-MoO3: stability loss mechanism uncovered by Raman spectroscopy and DFT calculations[J]. Vibrational Spectroscopy, 2018, 98: 98-104.

    [25] [25] HAMMOND S R, MEYER J, WIDJONARKO N E, et al. Low-temperature, solution-processed molybdenum oxide hole-collection layer for organic photovoltaics[J]. Journal of Materials Chemistry, 2012, 22(7): 3249-3254.

    [26] [26] AVILS F, CAUICH-RODRGUEZ J V, MOO-TAH L, et al. Evaluation of mild acid oxidation treatments for MWCNT functionalization[J]. Carbon, 2009, 47(13): 2970-2975.

    [27] [27] WU H, WANG H, LI G H. Metal oxide semiconductor SERS-active substrates by defect engineering[J]. The Analyst, 2017, 142(2): 326-335.

    [28] [28] LI N, LI Y M, SUN G Y, et al. Selective and tunable near-infrared and visible light transmittance of MoO3-x nanocomposites with different crystallinity[J]. Chemistry-An Asian Journal, 2017, 12(14): 1709-1714.

    [29] [29] ZHANG Q Q, LI X S, MA Q, et al. A metallic molybdenum dioxide with high stability for surface enhanced Raman spectroscopy[J]. Nature Communications, 2017, 8: 14903.

    [30] [30] FENG C Y, TANG L, DENG Y C, et al. Maintaining stable LSPR performance of W18O49 by protecting its oxygen vacancy: a novel strategy for achieving durable sunlight driven photocatalysis[J]. Applied Catalysis B: Environmental, 2020, 276: 119167.

    [31] [31] HUANG Q K, LIU Q Y, LI X, et al. Defect induced the surface enhanced Raman scattering of MoO3-x thin films by thermal treatment[J]. Materials Today Communications, 2022, 33: 105025.

    [32] [32] GREINER M T, HELANDER M G, TANG W M, et al. Universal energy-level alignment of molecules on metal oxides[J]. Nature Materials, 2012, 11: 76-81.

    [33] [33] LING X, XIE L M, FANG Y, et al. Can graphene be used as a substrate for Raman enhancement?[J]. Nano Letters, 2010, 10(2): 553-561.

    [34] [34] SONG G, GONG W B, CONG S, et al. Ultrathin two-dimensional nanostructures: surface defects for morphology-driven enhanced semiconductor SERS[J]. Angewandte Chemie, 2021, 60(10): 5505-5511.

    [35] [35] CHEN S, YANG Z L, MENG L Y, et al. Electromagnetic enhancement in shell-isolated nanoparticle-enhanced Raman scattering from gold flat surfaces[J]. The Journal of Physical Chemistry C, 2015, 119(9): 5246-5251.

    Tools

    Get Citation

    Copy Citation Text

    SHU Min, LIANG Junhui, CHEN Da, CHEN Zhao, QIN Laishun. Study on the Characteristics of MoO3-x Nanoslot SERS Substrate Prepared by Hydrothermal Method[J]. Journal of Synthetic Crystals, 2024, 53(6): 1061

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 28, 2024

    Accepted: --

    Published Online: Aug. 22, 2024

    The Author Email: LIANG Junhui (nkljhyx@163.com)

    DOI:

    CSTR:32186.14.

    Topics