Journal of Synthetic Crystals, Volume. 51, Issue 5, 875(2022)

Retention of New Functional Carbon Materials under High Pressure

LYU Chaofan1,2,3、*, ZANG Jinhao1, YANG Xigui1, and SHAN Chongxin1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(36)

    [1] [1] LU Y J, LIN C N, SHAN C X. Optoelectronic diamond: growth, properties, and photodetection applications[J]. Advanced Optical Materials, 2018, 6(20): 1800359.

    [2] [2] QIN J X, YANG X G, LV C F, et al. Nanodiamonds: synthesis, properties, and applications in nanomedicine[J]. Materials & Design, 2021, 210: 110091.

    [3] [3] LIN C N, LU Y J, TIAN Y Z, et al. Diamond based photodetectors for solar-blind communication[J]. Optics Express, 2019, 27(21): 29962-29971.

    [4] [4] CHEN Y C, LU Y J, LIN C N, et al. Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging[J]. Journal of Materials Chemistry C, 2018, 6(21): 5727-5732.

    [5] [5] ZHANG Z F, LIN C N, YANG X, et al. Solar-blind imaging based on 2-inch polycrystalline diamond photodetector linear array[J]. Carbon, 2021, 173: 427-432.

    [6] [6] MAO W L, MAO H K, ENG P J, et al. Bonding changes in compressed superhard graphite[J]. Science, 2003, 302(5644): 425-427.

    [7] [7] WANG Z W, ZHAO Y S, TAIT K, et al. A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(38): 13699-13702.

    [8] [8] WANG L, LIU B B, LI H, et al. Long-range ordered carbon clusters: a crystalline material with amorphous building blocks[J]. Science, 2012, 337(6096): 825-828.

    [9] [9] PEI C Y, FENG M N, YANG Z X, et al. Quasi 3D polymerization in C60 bilayers in a fullerene solvate[J]. Carbon, 2017, 124: 499-505.

    [10] [10] WANG L, LIU B B, YU S D, et al. Highly enhanced luminescence from single-crystalline C60·1m-xylene nanorods[J]. Chemistry of Materials, 2006, 18(17): 4190-4194.

    [11] [11] YAO M G, CUI W, DU M R, et al. Tailoring building blocks and their boundary interaction for the creation of new, potentially superhard, carbon materials[J]. Advanced Materials, 2015, 27(26): 3962-3968.

    [12] [12] WANG L. Solvated fullerenes, a new class of carbon materials suitable for high-pressure studies: a review[J]. Journal of Physics and Chemistry of Solids, 2015, 84: 85-95.

    [13] [13] PEI C Y, WANG L. Recent progress on high-pressure and high-temperature studies of fullerenes and related materials[J]. Matter and Radiation at Extremes, 2019, 4(2): 028201.

    [14] [14] ZOU Y G, LIU B B, YAO M G, et al. Raman spectroscopy study of carbon nanotube peapods excited by near-IR laser under high pressure[J]. Physical Review B, 2007, 76(19): 195417.

    [15] [15] WANG L, LIU B B, LIU D D, et al. Synthesis and high pressure induced amorphization of C60 nanosheets[J]. Applied Physics Letters, 2007, 91(10): 103112.

    [16] [16] SHANG Y, LIU Z, DONG J, et al. Ultrahard bulk amorphous carbon from collapsed fullerene[J]. Nature, 2021, 599(7886): 599-604.

    [17] [17] TANG H, YUAN X, CHENG Y, et al. Synthesis of paracrystalline diamond[J]. Nature, 2021, 599(7886): 605-610.

    [18] [18] ZHANG S S, LI Z H, LUO K, et al. Discovery of carbon-based strongest and hardest amorphous material[J]. National Science Review, 2021, 9(1): nwab140.

    [19] [19] YAO M G, WANG Z G, LIU B B, et al. Raman signature to identify the structural transition of single-wall carbon nanotubes under high pressure[J]. Physical Review B, 2008, 78(20): 205411.

    [20] [20] YANG X G, DONG J J, YAO M G, et al. Diamond-graphite nanocomposite synthesized from multi-walled carbon nanotubes fibers[J]. Carbon, 2021, 172: 138-143.

    [21] [21] LIANG Y C, SHANG Y, LIU K K, et al. Water-induced ultralong room temperature phosphorescence by constructing hydrogen-bonded networks[J]. Nano Research, 2020, 13(3): 875-881.

    [22] [22] YANG X G, LV C F, LIU S J, et al. Orthorhombic C14 carbon: a novel superhard sp3 carbon allotrope[J]. Carbon, 2020, 156: 309-312.

    [23] [23] LV R Y, YANG X G, YANG D W, et al. Computational prediction of a novel superhard sp3 trigonal carbon allotrope with bandgap larger than diamond[J]. Chinese Physics Letters, 2021, 38(7): 076101.

    [24] [24] WATARU U, TAKEHIKO Y. Light-transparent phase formed by room-temperature compression of graphite[J]. Science, 1991, 252(5012): 1542-1544.

    [25] [25] YANG X G, YAO M G, WU X Y, et al. Novel superhard sp3 carbon allotrope from cold-compressed C70 peapods[J]. Physical Review Letters, 2017, 118(24): 245701.

    [26] [26] SHI L, ROHRINGER P, SUENAGA K, et al. Confined linear carbon chains as a route to bulk carbyne[J]. Nature Materials, 2016, 15(6): 634-639.

    [27] [27] ANDRADE N F, AGUIAR A L, KIM Y A, et al. Linear carbon chains under high-pressure conditions[J]. The Journal of Physical Chemistry C, 2015, 119(19): 10669-10676.

    [28] [28] NEVES W Q, ALENCAR R S, FERREIRA R S, et al. Effects of pressure on the structural and electronic properties of linear carbon chains encapsulated in double wall carbon nanotubes[J]. Carbon, 2018, 133: 446-456.

    [29] [29] YANG X G, LV C F, YAO Z, et al. Band-gap engineering and structure evolution of confined long linear carbon chains@double-walled carbon nanotubes under pressure[J]. Carbon, 2020, 159: 266-272.

    [30] [30] ZHAI C, YIN X, NIU S, et al. Molecular insertion regulates the donor-acceptor interactions in cocrystals for the design of piezochromic luminescent materials[J]. Nature Communications, 2021, 12: 4084.

    [31] [31] LV C F, YANG X G, SHI Z F, et al. Pressure-induced ultra-broad-band emission of a Cs2AgBiBr6 perovskite thin film[J]. The Journal of Physical Chemistry C, 2020, 124(2): 1732-1738.

    [32] [32] LIU K K, SONG S Y, SUI L Z, et al. Efficient red/near-infrared-emissive carbon nanodots with multiphoton excited upconversion fluorescence[J]. Advanced Science, 2019, 6(17): 1900766.

    [33] [33] LIANG Y C, GOU S S, LIU K K, et al. Ultralong and efficient phosphorescence from silica confined carbon nanodots in aqueous solution[J]. Nano Today, 2020, 34: 100900.

    [34] [34] SHEN C L, LOU Q, LIU K K, et al. Chemiluminescent carbon dots: synthesis, properties, and applications[J]. Nano Today, 2020, 35: 100954.

    [35] [35] LIANG Y C, LIU K K, WU X Y, et al. Lifetime-engineered carbon nanodots for time division duplexing[J]. Advanced Science, 2021, 8(6): 2003433.

    [36] [36] LOU Q, YANG X G, LIU K K, et al. Pressure-induced photoluminescence enhancement and ambient retention in confined carbon dots[J]. Nano Research, 2022, 15(3): 2545-2551.

    Tools

    Get Citation

    Copy Citation Text

    LYU Chaofan, ZANG Jinhao, YANG Xigui, SHAN Chongxin. Retention of New Functional Carbon Materials under High Pressure[J]. Journal of Synthetic Crystals, 2022, 51(5): 875

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 21, 2022

    Accepted: --

    Published Online: Jul. 7, 2022

    The Author Email: Chaofan LYU (lvchaofan20@mails.ucas.ac.cn)

    DOI:

    CSTR:32186.14.

    Topics