Optics and Precision Engineering, Volume. 31, Issue 17, 2598(2023)

Lightweight deep global-local knowledge distillation network for hyperspectral image scene classification

Yingxu LIU1, Chunyu PU1, Diankun XU2, Yichuan YANG1, and Hong HUANG1、*
Author Affiliations
  • 1Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, Chongqing University, Chongqing400044, China
  • 2Measurement and Control Technology and Instrument major, College of Optoelectronic Engineering, Chongqing University, Chongqing400044, China
  • show less
    References(24)

    [1] [1] 闫敬文, 陈宏达, 刘蕾. 高光谱图像分类的研究进展[J]. 光学 精密工程, 2019, 27(3): 680-693. doi: 10.3788/ope.20192703.0680YANJ W,CHENH D,LIUL. Overview of hyperspectral image classification [J]. Opt. Precision Eng., 2019, 27(3): 680-693. (in Chinese). doi: 10.3788/ope.20192703.0680

    [2] [2] 丁国绅, 乔延利, 易维宁, 等. 基于高光谱图像的改进SIFT特征提取与匹配[J]. 光学 精密工程, 2020, 28(4): 954-962. doi: 10.3788/OPE.20202804.0954DINGG S,QIAOY L,YIW N,et al. Improved SIFT feature extraction and matching technology based on hyperspectral image [J]. Opt. Precision Eng., 2020, 28(4): 954-962. (in Chinese). doi: 10.3788/OPE.20202804.0954

    [3] [3] 陈静, 张静. 改进高斯过程回归的高光谱空谱联合分类算法[J]. 光学 精密工程, 2019, 27(7): 1649-1660. doi: 10.3788/ope.20192707.1649CHENJ, ZHANGJ. Spectral-spatial joint classification of hyperspectral image algorithm based on improved Gaussian process regression [J]. Opt. Precision Eng., 2019, 27(7): 1649-1660. (in Chinese). doi: 10.3788/ope.20192707.1649

    [4] CAI Y M, LIU X B, CAI Z H. BS-nets: an end-to-end framework for band selection of hyperspectral image[J]. IEEE Transactions on Geoscience and Remote Sensing, 58, 1969-1984(2020).

    [5] HU F, XIA G S, YANG W et al. Mining deep semantic representations for scene classification of high-resolution remote sensing imagery[J]. IEEE Transactions on Big Data, 6, 522-536(2020).

    [6] LUO F L, DU B, ZHANG L P et al. Feature learning using spatial-spectral hypergraph discriminant analysis for hyperspectral image[J]. IEEE Transactions on Cybernetics, 49, 2406-2419(2019).

    [7] TONG X Y, XIA G S, LU Q et al. Land-cover classification with high-resolution remote sensing images using transferable deep models[J]. Remote Sensing of Environment, 237, 111322(2020).

    [8] YU Y T, LI Y Y, WANG J et al. C²-CapsViT: cross-context and cross-scale capsule vision transformers for remote sensing image scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 19, 1-5(2022).

    [9] ZOU Q, NI L H, ZHANG T et al. Deep learning based feature selection for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 12, 2321-2325(2015).

    [10] Bi Q, QIN K, LI Z L et al. A multiple-instance densely-connected ConvNet for aerial scene classification[J]. IEEE Transactions on Image Processing, 9, 4911-4926(2020).

    [11] CHENG G, CAI L M, LANG C B et al. SPNet: Siamese-prototype network for few-shot remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-11(2022).

    [12] LI E Z, XIA J S, Du P J et al. Integrating multilayer features of convolutional neural networks for remote sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 5653-5665(2017).

    [13] CHAIB S, LIU H, GU Y F et al. Deep feature fusion for VHR remote sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 4775-4784(2017).

    [14] XU K J, HUANG H, DENG P F et al. Two-stream feature aggregation deep neural network for scene classification of remote sensing images[J]. Information Sciences, 539, 250-268(2020).

    [15] FANG J, YUAN Y, LU X Q et al. Robust space–frequency joint representation for remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 57, 7492-7502(2019).

    [16] HE X, CHEN Y S, LIN Z H. Spatial-spectral transformer for hyperspectral image classification[J]. Remote Sensing, 13, 498(2021).

    [17] BAZI Y, BASHMAL L, RAHHAL M M AL et al. Vision transformers for remote sensing image classification[J]. Remote Sensing, 13, 516(2021).

    [18] ZHANG J R, ZHAO H W, LI J. TRS: Transformers for remote sensing scene classification[J]. Remote Sensing, 13, 4143(2021).

    [19] SHI C, FANG L, LV Z Y et al. Explainable scale distillation for hyperspectral image classification[J]. Pattern Recognition, 122, 108316(2022).

    [20] HU Y T, HUANG X, LUO X Y et al. Variational Self-Distillation for Remote Sensing Scene Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-13(2022).

    [21] [21] 刘康, 周壮, 李盛阳, 等. 天宫一号高光谱遥感场景分类数据集及应用[J]. 遥感学报, 2020, 24(9): 1077-1087. doi: 10.11834/jrs.20209323LIUK, ZHOUZ, LIS Y, et al. Scene classification dataset using the Tiangong-1 hyperspectral remote sensing imagery and its applications [J]. Journal of Remote Sensing, 2020, 24(9): 1077-1087. (in Chinese). doi: 10.11834/jrs.20209323

    [22] [22] 徐科杰,邓培芳,黄鸿.HSRS-SC:面向遥感场景分类的高光谱图像数据集[J]. 中国图象图形学报,2021,26(8):1809-1822. doi: 10.11834/jig.200835XUK J, DENGP F, HUANGH. HSRS-SC: a hyperspectral image dataset for remote sensing scene classification [J]. Journal of Image and Graphics, 2021, 26(8): 1809-1822. (in Chinese). doi: 10.11834/jig.200835

    [23] WANG Q, HUANG W, XIONG Z T et al. Looking closer at the scene: multiscale representation learning for remote sensing image scene classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 33, 1414-1428(2022).

    [24] WANG Q, LIU S T, CHANUSSOT J et al. Scene classification with recurrent attention of VHR remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 57, 1155-1167(2019).

    Tools

    Get Citation

    Copy Citation Text

    Yingxu LIU, Chunyu PU, Diankun XU, Yichuan YANG, Hong HUANG. Lightweight deep global-local knowledge distillation network for hyperspectral image scene classification[J]. Optics and Precision Engineering, 2023, 31(17): 2598

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Jan. 3, 2023

    Accepted: --

    Published Online: Oct. 9, 2023

    The Author Email: Hong HUANG (hhuang@cqu.edu.cn)

    DOI:10.37188/OPE.20233117.2598

    Topics