Laser Technology, Volume. 43, Issue 2, 233(2019)
Identification method of aircraft wake vortex based on Doppler lidar
[1] [1] WEIMERSKIRCH H, MARTIN J, CLERQUIN Y, et al. Energy saving in flight formation[J]. Nature, 2001, 413(6857):697-698.
[2] [2] CROW S C. Stability theory for a pair of trailing vortices[J]. AIAA Journal, 1970, 8(12):2172-2179.
[3] [3] IVANOV A V, LEBEDEV A V, OSTROVSKII L A, et al. Experimental investigation of the motion of laminar vortex pairs in a stratified fluid[J]. Fluid Dynamics, 1987, 22(2):322-325.
[4] [4] MURPHY B, O’CALLAGHAN J, FOX M, et al. Overview of the structures investigation for the american airlines flight 587 investigation[C]//Structural Dynamics and Materials Conference. Washington DC,USA:American Institute of Aero-nautics and Astronautics, 2013:3369-3373.
[5] [5] FEDERAL AVIATION ADMINISTRATION. Official accident investigation report[EB/OL]. (2009-2-25)[2018-2-13].http://asndata.aviation-safety.net/reports/2009/20090225-0_B738_TC-JGE.sheml.
[6] [6] INTERNATIONAL CIVIL AVIATION ORGANIZATION. Air regulations and air traffic services[DB/CD]. Beijing: Air Traffic Management Bureau of CAAC, 2000:1-289.
[7] [7] INTERNATIONAL CIVIL AVIATION ORGANIZATION. Air traffic service manual (ICAO9426-AN/924) [DB/CD]. Beijing: Air Traffic Management Bureau of CAAC, 1999:1-117.
[8] [8] XU Sh L, HU Y H, WU Y H. Identification of aircraft wake vortex based on Doppler spectrum features[J]. Journal of Optoelectronics·Laser, 2011, 22(12):1826-1830(in Chinese).
[9] [9] LI C, LIU J W, ZHAO P E, et al. Correction method of tilt wind field of mobile wind lidar[J]. Laser Techonlogy, 2017, 41(3): 385-390(in chinese).
[10] [10] CHOROBA P. Comprehensive study of the wake vortex phenomena to the assessment of its incorporation to ATM for safety and capacity improvements[D]. Zilina, Slovak Republic: University of Zilina, 2006:1-184.
[11] [11] FREHLICH R, SHARMAN R. Maximum likelihood estimates of vortex parameters from simulated coherent doppler lidar data[J]. Journal of Atmospheric & Oceanic Technology, 2005, 22(22):117-130.
[12] [12] HUANG J Ch, SUN Y W, XU Y, et al. Radar signal fast recognition based on the principle of time series comparability[J]. Electronic Information Warfare Technology, 2012, 27(5):1-5 (in Chinese).
[13] [13] WU Y H, HU Y H, DAI D Ch, et al. Research on the technique of aircraft wake vortex detection based on 1.5μm Doppler lidar[J]. Acta Photonica Sinica, 2011, 40(6):811-817(in Chinese).
[14] [14] HU Y H, WU Y H. Study on the characteristic of aircraft wake vortex and lidar detection technique[J]. Infrared & Laser Engineering, 2011, 40(6):1063-1069(in Chinese).
[15] [15] FENG J Zh, LIANG J Y, ZHENG S L, et al. Correlction coefficient method for vehicle road simulated load signal screening[J]. Journal of Mechanical Strength,2018,40(1):50-54(in Chinese).
[16] [16] QIAO X Q, CHEN D H, WANG Sh L. Joint estimation of modulation and SNR via method of moments and Kolmogorov-Smirnov test [J]. Journal of Information Engineering University, 2017,18(4):399-402(in Chinese).
Get Citation
Copy Citation Text
PAN Weijun, ZHANG Qingyu, ZHANG Qiang, LI Hua, WU Zhengyuan. Identification method of aircraft wake vortex based on Doppler lidar[J]. Laser Technology, 2019, 43(2): 233
Category:
Received: May. 15, 2018
Accepted: --
Published Online: Jul. 10, 2019
The Author Email: PAN Weijun (675702767@qq.com)