Laser Technology, Volume. 43, Issue 2, 233(2019)

Identification method of aircraft wake vortex based on Doppler lidar

PAN Weijun*, ZHANG Qingyu, ZHANG Qiang, LI Hua, and WU Zhengyuan
Author Affiliations
  • [in Chinese]
  • show less
    References(16)

    [1] [1] WEIMERSKIRCH H, MARTIN J, CLERQUIN Y, et al. Energy saving in flight formation[J]. Nature, 2001, 413(6857):697-698.

    [2] [2] CROW S C. Stability theory for a pair of trailing vortices[J]. AIAA Journal, 1970, 8(12):2172-2179.

    [3] [3] IVANOV A V, LEBEDEV A V, OSTROVSKII L A, et al. Experimental investigation of the motion of laminar vortex pairs in a stratified fluid[J]. Fluid Dynamics, 1987, 22(2):322-325.

    [4] [4] MURPHY B, O’CALLAGHAN J, FOX M, et al. Overview of the structures investigation for the american airlines flight 587 investigation[C]//Structural Dynamics and Materials Conference. Washington DC,USA:American Institute of Aero-nautics and Astronautics, 2013:3369-3373.

    [5] [5] FEDERAL AVIATION ADMINISTRATION. Official accident investigation report[EB/OL]. (2009-2-25)[2018-2-13].http://asndata.aviation-safety.net/reports/2009/20090225-0_B738_TC-JGE.sheml.

    [6] [6] INTERNATIONAL CIVIL AVIATION ORGANIZATION. Air regulations and air traffic services[DB/CD]. Beijing: Air Traffic Management Bureau of CAAC, 2000:1-289.

    [7] [7] INTERNATIONAL CIVIL AVIATION ORGANIZATION. Air traffic service manual (ICAO9426-AN/924) [DB/CD]. Beijing: Air Traffic Management Bureau of CAAC, 1999:1-117.

    [8] [8] XU Sh L, HU Y H, WU Y H. Identification of aircraft wake vortex based on Doppler spectrum features[J]. Journal of Optoelectronics·Laser, 2011, 22(12):1826-1830(in Chinese).

    [9] [9] LI C, LIU J W, ZHAO P E, et al. Correction method of tilt wind field of mobile wind lidar[J]. Laser Techonlogy, 2017, 41(3): 385-390(in chinese).

    [10] [10] CHOROBA P. Comprehensive study of the wake vortex phenomena to the assessment of its incorporation to ATM for safety and capacity improvements[D]. Zilina, Slovak Republic: University of Zilina, 2006:1-184.

    [11] [11] FREHLICH R, SHARMAN R. Maximum likelihood estimates of vortex parameters from simulated coherent doppler lidar data[J]. Journal of Atmospheric & Oceanic Technology, 2005, 22(22):117-130.

    [12] [12] HUANG J Ch, SUN Y W, XU Y, et al. Radar signal fast recognition based on the principle of time series comparability[J]. Electronic Information Warfare Technology, 2012, 27(5):1-5 (in Chinese).

    [13] [13] WU Y H, HU Y H, DAI D Ch, et al. Research on the technique of aircraft wake vortex detection based on 1.5μm Doppler lidar[J]. Acta Photonica Sinica, 2011, 40(6):811-817(in Chinese).

    [14] [14] HU Y H, WU Y H. Study on the characteristic of aircraft wake vortex and lidar detection technique[J]. Infrared & Laser Engineering, 2011, 40(6):1063-1069(in Chinese).

    [15] [15] FENG J Zh, LIANG J Y, ZHENG S L, et al. Correlction coefficient method for vehicle road simulated load signal screening[J]. Journal of Mechanical Strength,2018,40(1):50-54(in Chinese).

    [16] [16] QIAO X Q, CHEN D H, WANG Sh L. Joint estimation of modulation and SNR via method of moments and Kolmogorov-Smirnov test [J]. Journal of Information Engineering University, 2017,18(4):399-402(in Chinese).

    CLP Journals

    [1] Wang Xuan, Pan Weijun, Wang Hao, Luo Yuming. Detection and Evolution Analysis of ARJ21 Wake Vortex in the Near-ground Stage[J]. APPLIED LASER, 2022, 42(1): 83

    Tools

    Get Citation

    Copy Citation Text

    PAN Weijun, ZHANG Qingyu, ZHANG Qiang, LI Hua, WU Zhengyuan. Identification method of aircraft wake vortex based on Doppler lidar[J]. Laser Technology, 2019, 43(2): 233

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 15, 2018

    Accepted: --

    Published Online: Jul. 10, 2019

    The Author Email: PAN Weijun (675702767@qq.com)

    DOI:10.7510/jgjs.issn.1001-3806.2019.02.016

    Topics