Journal of Inorganic Materials, Volume. 36, Issue 1, 81(2021)
[1] FU F F, WU Y L, ZHU J Y et al. Multifunctional lactobionic acid-modified dendrimers for targeted drug delivery to liver cancer cells: investigating the role played by PEG spacer[D]. ACS Applied Materials & Interfaces, 6, 16416-16425(2014).
[2] SCHILLER J H, HARRINGTON D, BELANI C P et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer[D]. New England Journal of Medicine, 346, 92-98(2002).
[3] SHAO T P, WEN J, ZHANG Q et al. NIR photo-responsive drug delivery and synergistic chemo-photothermal therapy by monodispersed MoS2 nanosheets wrapped periodic mesoporous organosilicas[D]. Journal of Materials Chemistry B, 4, 1-26(2016).
[4] GOLDMAN B. Multidrug resistance: can new drugs help chemotherapy score against cancer?[D]. J. Natl. Cancer I, 95, 255-257(2003).
[5] KANG H, TRONDOLI A C, ZHU G et al. Near-infrared light- responsive core-shell nanogels for targeted drug delivery[D]. ACS Nano, 5, 5094-5099(2011).
[6] CHEN Q, LIANG C, WANG C et al. An imagable and photothermal ‘abraxane-like’ nanodrug for combination cancer therapy to treat subcutaneous and metastatic breast tumors[D]. Advanced Materials, 27, 903-910(2015).
[7] LI Z L, FAN X L, LIU J et al. Mesoporous silica-coated bismuth nanohybrids as a new platform for photoacoustic/computed tomography imaging and synergistic chemo-photothermal therapy[D]. Nanomedicine, 13, 2283-2300(2018).
[8] GAO J B, WANG F, WANG S H et al. Hyperthermia-triggered on-demand biomimetic nanocarriers for synergetic photothermal and chemotherapy[D]. Advanced Science, 7, 1903642(2020).
[9] ZOU Y, LI M L, XIONG T et al. A single molecule drug targeting photosensitizer for enhanced breast cancer photothermal therapy[D]. Small, 16, 1907677(2020).
[10] SUN H, CHANG R, ZOU Q et al. Supramolecular protein nanodrugs with coordination and heating-enhanced photothermal effects for antitumor therapy[D]. Small, 15, 1905326(2019).
[11] ZHANG Q H, GUO Q B, CHEN Q et al. Highly efficient 2D NIR-II photothermal agent with Fenton catalytic activity for cancer synergistic photothermal-chemodynamic therapy[D]. Advanced Science, 7, 1902576(2020).
[12] WENG Y Z W, GUAN S Y, LI W et al. Defective porous carbon polyhedra decorated with copper nanoparticles for enhanced NIR‐ driven photothermal cancer therapy[D]. Small, 16, 1905184(2019).
[13] MU X, LU Y, WU F et al. Supramolecular nanodiscs self-assembled from non-ionic heptamethine cyanine for imaging-guided cancer photothermal therapy[D]. Advanced Materials, 32, 1906711(2020).
[14] SARAH P.S, SCOTT M. T, XIE L M et al. Photothermally enhanced drug delivery by ultrasmall multifunctional Fe-Co/graphitic shell nanocrystals[D]. ACS Nano, 5, 1505-1512(2011).
[15] ZHENG M B, YUE C X, MA Y F et al. Single-step assembly of DOX/ICG loaded lipid polymer nanoparticles for highly effective chemo-photothermal combination therapy[D]. ACS Nano, 7, 2056-2067(2013).
[16] XIA Y N, LI W Y, COBLEY C M et al. Gold nanocages: from synthesis to theranostic applications[D]. Accounts of Chemical Research, 44, 914-924(2011).
[17] SKRABALAK S E, CHEN J, SUN Y et al. Gold nanocages: synthesis, properties, and applications[D]. Accounts Chem. Res.,, 40, 1587-1595(2008).
[18] HUANG X H, EI-SAYED M A. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy[D]. Journal of Advanced Research, 1, 13-28(2010).
[19] LIU Z, ROBINSON J T, SUN X et al. PEGylated nano-graphene oxide for delivery of water insoluble cancer drugs[D]. Journal of the American Chemical Society, 130, 10876-10877(2008).
[20] LIU X, TAO H, YANG K et al. Optimization of surface chemistry on single-walled carbon nanotubes for
[21] CHEN Q, LIANG C, WANG X et al. An albumin-based theranostic nano-agent for dual-modal imaging guided photothermal therapy to inhibit lymphatic metastasis of cancer post-surgery[D]. Biomaterials, 35, 9355-9362(2014).
[22] CHENG L, HE W W, GONG H et al. PEGylated micelle nanoparticles encapsulating a non-fluorescent near-infrared organic dye as a safe and highly effective photothermal agent for[D]. in vivo cancer therapy Advanced Functional Materials, 23, 5893-5902(2013).
[23] JI X Y, KONG N, WANG J Q et al. A novel top-down synthesis of ultrathin 2D boron nanosheets for multimodal imaging-guided cancer therapy[D]. Advanced Materials(2018).
[24] YANG J, DAI D, LOU X et al. Supramolecular nanomaterials based on hollow mesoporous drug carriers and macrocycle-capped CuS nanogates for synergistic chemo-photothermal therapy[D]. Theranostics, 10, 615-629(2020).
[25] FENG L Z, DONG Z L, LIU Z et al. The acidic tumor microenvironment: a target for smart cancer nano-theranostics[D]. National Science Review, 5, 269-286(2018).
[26] ZHANG X Y, WU J R, WILLIAMS G R et al. Dual-responsive molybdenum disulfide/copper sulfide-based delivery systems for enhanced chemo-photothermal therapy[D]. Journal of Colloid and Interface Science, 539, 433-441(2018).
[27] KANG H, TRONDOLI A C, ZHU G et al. Near-infrared light-responsive core-shell nanogels for targeted drug delivery[D]. ACS Nano, 5, 5094-5099(2011).
[28] ZHENG M, YUE C, MA Y et al. Single-step assembly of DOX/ICG loaded lipid-polymer nanoparticles for highly effective chemo-photothermal combination therapy.[D]. ACS Nano, 7, 2056-2067(2013).
[29] LIU J J, WANG C, WANG X J et al. Mesoporous silica coated single-walled carbon nanotubes as a multifunctional light-responsive platform for cancer combination therapy.[D]. Advanced Functional Materials, 25, 384-392(2015).
[30] CAI X J, JIA X Q, CHEN H R et al. A versatile nanotheranostic agent for efficient dual-mode imaging guided synergistic chemo- thermal tumor therapy[D]. Advanced Functional Materials, 25, 2520-2529(2015).
Get Citation
Copy Citation Text
Xue XIE, Jianrong WU, Xiaojun CAI, Junnian HAO, Yuanyi ZHENG.
Category: RESEARCH PAPER
Received: Jul. 14, 2020
Accepted: --
Published Online: Jan. 21, 2021
The Author Email: Yuanyi ZHENG (zhengyuanyi@163.com)