Acta Optica Sinica, Volume. 43, Issue 15, 1532001(2023)
Research Progress on Intense, Broadband, Terahertz Wave Radiation
[1] Mittleman D M. Perspective: Terahertz science and technology[J]. Journal of Applied Physics, 122, 230901(2017).
[2] Nagatsuma T, Ducournau G, Renaud C C. Advances in terahertz communications accelerated by photonics[J]. Nature Photonics, 10, 371-379(2016).
[3] Zhang X C, Shkurinov A, Zhang Y. Extreme terahertz science[J]. Nature Photonics, 11, 16-18(2017).
[4] Gu Z, Chen Y, Li H Y et al. Research progress of terahertz radiation sources[J]. Infrared Technology, 33, 252-256, 261(2011).
[5] Ye Q Y, Yang C. Recent progress in THz sources based on photonics methods[J]. Chinese Optics, 5, 1-11(2012).
[6] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 1, 97-105(2007).
[7] Mittleman D M, Jacobsen R H, Nuss M C. T-ray imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2, 679-692(1996).
[8] Mittleman D M, Hunsche S, Boivin L et al. T-ray tomography[J]. Optics Letters, 22, 904(1997).
[9] Mittleman D M, Jacobsen R H, Neelamani R et al. Gas sensing using terahertz time-domain spectroscopy[J]. Applied Physics B, 67, 379-390(1998).
[10] Scalari G, Walther C, Faist J et al. Electrically switchable, two-color quantum cascade laser emitting at 1.39 and 2.3 THz[J]. Applied Physics Letters, 88, 141102(2006).
[11] Ito H, Nakajima F, Furuta T et al. Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes[J]. Semiconductor Science and Technology, 20, S191-S198(2005).
[12] Dem’yanenko M A, Esaev D G, Knyazev B A et al. Imaging with a 90 frames/s microbolometer focal plane array and high-power terahertz free electron laser[J]. Applied Physics Letters, 92, 131116(2008).
[13] Zvyagin S A, Ozerov M, Čižmár E et al. Terahertz-range free-electron laser electron spin resonance spectroscopy: techniques and applications in high magnetic fields[J]. Review of Scientific Instruments, 80, 073102(2009).
[14] Sung C, Tochitsky S Y, Reiche S et al. Seeded free-electron and inverse free-electron laser techniques for radiation amplification and electron microbunching in the terahertz range[J]. Physical Review Special Topics - Accelerators and Beams, 9, 120703(2006).
[15] Bratman V L, Kalynov Y K, Manuilov V N. Large-Orbit Gyrotron operation in the terahertz frequency range[J]. Physical Review Letters, 102, 245101(2009).
[16] Sabchevski S P, Idehara T. Design of a compact sub-terahertz gyrotron for spectroscopic applications[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 31, 934-948(2010).
[17] Nusinovich G S, Sprangle P, Semenov V E et al. On the sensitivity of terahertz gyrotron based systems for remote detection of concealed radioactive materials[J]. Journal of Applied Physics, 111, 124912(2012).
[18] Lee Y S[M]. Principles of terahertz science and technology(2009).
[19] Auston D H. Picosecond optoelectronic switching and gating in silicon[J]. Applied Physics Letters, 26, 101-103(1975).
[20] Hoffmann M C, Yeh K L, Hebling J et al. Efficient terahertz generation by optical rectification at 1035 nm[J]. Optics Express, 15, 11706-11713(2007).
[21] Blanchard F, Razzari L, Bandulet H-C et al. Generation of 1.5 μJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal[J]. Optics Express, 15, 13212-13220(2007).
[22] Hu B B, Nuss M C. Imaging with terahertz waves[J]. Optics Letters, 20, 1716-1718(1995).
[23] Lee Y S, Cui W Z[M]. Principles of terahertz science and technology(2012).
[24] Welsh G H, Hunt N T, Wynne K. Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating[J]. Physical Review Letters, 98, 026803(2007).
[25] Welsh G H, Wynne K. Generation of ultrafast terahertz radiation pulses on metallic nanostructured surfaces[J]. Optics Express, 17, 2470-2480(2009).
[26] Polyushkin D K, Hendry E, Stone E K et al. THz generation from plasmonic nanoparticle arrays[J]. Nano Letters, 11, 4718-4724(2011).
[27] Dai J M, Zhang X C. Terahertz wave generation from thin metal films excited by asymmetrical optical fields[J]. Optics Letters, 39, 777-780(2014).
[28] Takano K, Asai M, Kato K et al. Terahertz emission from gold nanorods irradiated by ultrashort laser pulses of different wavelengths[J]. Scientific Reports, 9, 3280(2019).
[29] Hamster H, Sullivan A, Gordon S et al. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction[J]. Physical Review Letters, 71, 2725-2728(1993).
[30] Hamster H, Sullivan A, Gordon S et al. Short-pulse terahertz radiation from high-intensity-laser-produced plasmas[J]. Physical Review E, 49, 671-677(1994).
[31] Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectification in air[J]. Optics Letters, 25, 1210-1212(2000).
[32] Kress M, Löffler T, Eden S et al. Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves[J]. Optics Letters, 29, 1120-1122(2004).
[33] Löffler T, Kress M, Thomson M et al. Efficient terahertz pulse generation in laser-induced gas plasmas[J]. Acta Physica Polonica A, 107, 99-108(2005).
[34] Kim K Y, Glownia J H, Taylor A J et al. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields[J]. Optics Express, 15, 4577-4584(2007).
[35] Bartel T, Gaal P, Reimann K et al. Generation of single-cycle THz transients with high electric-field amplitudes[J]. Optics Letters, 30, 2805-2807(2005).
[36] Lu C H, Zhang C Y, Zhang L Q et al. Modulation of terahertz-spectrum generation from an air plasma by tunable three-color laser pulses[J]. Physical Review A, 96, 053402(2017).
[37] Jin Q, E Y W, Williams K et al. Observation of broadband terahertz wave generation from liquid water[J]. Applied Physics Letters, 111, 071103(2017).
[38] Dey I, Jana K, Fedorov V Y et al. Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids[J]. Nature Communications, 8, 1184(2017).
[39] Horiuchi N. Terahertz surprises[J]. Nature Photonics, 12, 128-130(2018).
[40] Zhang L L, Mu K J, Zhou Y S et al. High-power THz to IR emission by femtosecond laser irradiation of random 2D metallic nanostructures[J]. Scientific Reports, 5, 12536(2015).
[41] Zhang L L, Buccheri F, Zhang C L et al. Terahertz emission from thin metal films with porous nanostructures[J]. Applied Physics Letters, 107, 071107(2015).
[42] Zhang L L, Wu T, Zhao J et al. Bi-directional terahertz-to-infrared emission from metal-coated nanostructures upon femtosecond laser irradiation[J]. Optics Express, 23, 25202-25208(2015).
[43] Zhang L L, Mu K J, Zhao J et al. Intense thermal terahertz-to-infrared emission from random metallic nanostructures under femtosecond laser irradiation[J]. Optics Express, 23, 14211-14218(2015).
[44] Zhang L L, Zhao J, Wu T et al. Terahertz-to-infrared emission through laser excitation of surface plasmons in metal films with porous nanostructures[J]. Optics Express, 23, 17185-17190(2015).
[45] Zhang L L, Wu T, Zhao H et al. Enhanced THz-to-IR emission from gas-surrounded metallic nanostructures by femtosecond laser irradiation[J]. Optics Communications, 381, 414-417(2016).
[46] Freitag M, Chiu H Y, Steiner M et al. Thermal infrared emission from biased graphene[J]. Nature Nanotechnology, 5, 497-501(2010).
[47] Raether H[M]. Surface plasmons on smooth and rough surfaces and on gratings(1988).
[48] Irvine S E, Elezzabi A Y. Ponderomotive electron acceleration using surface plasmon waves excited with femtosecond laser pulses[J]. Applied Physics Letters, 86, 264102(2005).
[49] Kreibig U, Vollmer M[M]. Optical properties of metal clusters(1995).
[50] Vorobyev A Y, Guo C L. Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation[J]. Applied Physics Letters, 86, 011916(2005).
[51] Vorobyev A Y, Guo C L. Thermal response and optical absorptance of metals under femtosecond laser irradiation[J]. Natural Science, 3, 488-495(2011).
[52] Vorobyev A Y, Guo C L. Enhanced energy coupling in femtosecond laser-metal interactions at high intensities[J]. Optics Express, 14, 13113-13119(2006).
[53] Zhong H A, Karpowicz N, Zhang X C. Terahertz emission profile from laser-induced air plasma[J]. Applied Physics Letters, 88, 261103(2006).
[54] Petersen P B, Tokmakoff A. Source for ultrafast continuum infrared and terahertz radiation[J]. Optics Letters, 35, 1962-1964(2010).
[55] Chen Y Q, Yamaguchi M, Wang M F et al. Terahertz pulse generation from noble gases[J]. Applied Physics Letters, 91, 251116(2007).
[56] Rodriguez G, Dakovski G L. Scaling behavior of ultrafast two-color terahertz generation in plasma gas targets: energy and pressure dependence[J]. Optics Express, 18, 15130-15143(2010).
[57] Sun X A, Zhang X C. Terahertz radiation in alkali vapor plasmas[J]. Applied Physics Letters, 104, 191106(2014).
[58] Löffler T, Jacob F, Roskos H G. Generation of terahertz pulses by photoionization of electrically biased air[J]. Applied Physics Letters, 77, 453-455(2000).
[59] Houard A, Liu Y, Prade B et al. Strong enhancement of terahertz radiation from laser filaments in air by a static electric field[J]. Physical Review Letters, 100, 255006(2008).
[60] Sun W F, Zhou Y S, Wang X K et al. External electric field control of THz pulse generation in ambient air[J]. Optics Express, 16, 16573-16580(2008).
[61] Chen Y P, Wang T J, Marceau C et al. Characterization of terahertz emission from a dc-biased filament in air[J]. Applied Physics Letters, 95, 101101(2009).
[62] Wang T J, Marceau C, Chen Y P et al. Terahertz emission from a dc-biased two-color femtosecond laser-induced filament in air[J]. Applied Physics Letters, 96, 211113(2010).
[63] Liu K, Koulouklidis A D, Papazoglou D G et al. Enhanced terahertz wave emission from air-plasma tailored by abruptly autofocusing laser beams[J]. Optica, 3, 605-608(2016).
[64] Xie X, Xu J Z, Dai J M et al. Enhancement of terahertz wave generation from laser induced plasma[J]. Applied Physics Letters, 90, 141104(2007).
[65] Wen H D, Daranciang D, Lindenberg A M. High-speed all-optical terahertz polarization switching by a transient plasma phase modulator[J]. Applied Physics Letters, 96, 161103(2010).
[66] Du H W, Hoshina H, Otani C et al. Terahertz waves radiated from two noncollinear femtosecond plasma filaments[J]. Applied Physics Letters, 107, 211113(2015).
[67] Clerici M, Peccianti M, Schmidt B E et al. Wavelength scaling of terahertz generation by gas ionization[J]. Physical Review Letters, 110, 253901(2013).
[68] Zhang L L, Zhang S J, Zhang R et al. Excitation-wavelength dependent terahertz wave polarization control in laser-induced filament[J]. Optics Express, 25, 32346-32354(2017).
[69] Zhang S J, Zhang L L, Zhao H et al. Excitation-wavelength scaling of terahertz radiation in alkali vapor plasmas[J]. Applied Physics Letters, 111, 111104(2017).
[70] Zhao H, Zhang L L, Huang S X et al. Terahertz wave generation from noble gas plasmas induced by a wavelength-tunable femtosecond laser[J]. IEEE Transactions on Terahertz Science and Technology, 8, 299-304(2018).
[71] He B Q, Nan J Y, Li M et al. Terahertz modulation induced by filament interaction[J]. Optics Letters, 42, 967-970(2017).
[72] Das J, Yamaguchi M. Terahertz wave excitation from preexisting air plasma[J]. Journal of the Optical Society of America B, 30, 1595-1600(2013).
[73] Wu T, Dong L Q, Huang S X et al. Excitation-wavelength-dependent terahertz wave modulation via preformed air plasma[J]. Applied Physics Letters, 112, 171106(2018).
[74] Wu T, Dong L Q, Zhang S J et al. Modulation of terahertz wave generation from laser-induced filament based on a preionized plasma[J]. Optics Communications, 444, 137-141(2019).
[75] Wu T, Dong L Q, Zhang R et al. Terahertz wave modulation by pre-plasma using different laser wavelength[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 40, 962-970(2019).
[76] Zhang L L, Wang W M, Wu T et al. Observation of terahertz radiation via the two-color laser scheme with uncommon frequency ratios[J]. Physical Review Letters, 119, 235001(2017).
[77] de Alaiza Martínez P G, Babushkin I, Bergé L et al. Boosting terahertz generation in laser-field ionized gases using a sawtooth wave shape[J]. Physical Review Letters, 114, 183901(2015).
[78] Sorenson S A, Moss C D, Kauwe S K et al. Enhancing terahertz generation from a two-color plasma using optical parametric amplifier waste light[J]. Applied Physics Letters, 114, 011106(2019).
[79] Liu S, Fan Z, Lu C et al. Coherent control of boosted terahertz radiation from air plasma pumped by a femtosecond three-color sawtooth field[J]. Physical Review A, 102, 063522(2020).
[80] Ma D N, Dong L Q, Zhang M H et al. Enhancement of terahertz waves from two-color laser-field induced air plasma excited using a third-color femtosecond laser[J]. Optics Express, 28, 20598-20608(2020).
[81] Kolesik M, Moloney J V, Mlejnek M. Unidirectional optical pulse propagation equation[J]. Physical Review Letters, 89, 283902(2002).
[82] Kolesik M, Moloney J V. Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations[J]. Physical Review E, 70, 036604(2004).
[83] Balakin A V, Coutaz J L, Makarov V A et al. Terahertz wave generation from liquid nitrogen[J]. Photonics Research, 7, 678-686(2019).
[84] Wu T. Characteristics of terahertz wave generated from air and liquid[D], 73-80(2020).
[85] Zhang L L, Wang W M, Wu T et al. Strong terahertz radiation from a liquid-water line[J]. Physical Review Applied, 12, 014005(2019).
[86] Feng S J, Dong L Q, Wu T et al. Terahertz wave emission from water lines[J]. Chinese Optics Letters, 18, 023202(2020).
[87] E Y W, Jin Q, Zhang X C. Enhancement of terahertz emission by a preformed plasma in liquid water[J]. Applied Physics Letters, 115, 101101(2019).
[88] E Y W, Cao Y Q, Ling F et al. Flowing cryogenic liquid target for terahertz wave generation[J]. AIP Advances, 10, 105119(2020).
[89] Cao Y Q, E Y W, Huang P J et al. Broadband terahertz wave emission from liquid metal[J]. Applied Physics Letters, 117, 041107(2020).
[90] Tan Y, Zhao H, Wang W M et al. Water-based coherent detection of broadband terahertz pulses[J]. Physical Review Letters, 128, 093902(2022).
[91] Zhao H, Tan Y, Zhang L L et al. Ultrafast hydrogen bond dynamics of liquid water revealed by terahertz-induced transient birefringence[J]. Light: Science & Applications, 9, 136(2020).
[92] Tan Y, Zhao H, Zhang R et al. Transient evolution of Quasifree electrons of plasma in liquid water revealed by optical-pump terahertz-probe spectroscopy[J]. Advanced Photonics, 3, 015002(2021).
[93] Elgabarty H, Kampfrath T, Bonthuis D J et al. Energy transfer within the hydrogen bonding network of water following resonant terahertz excitation[J]. Science Advances, 6, eaay7074(2020).
[94] Balos V, Kaliannan N K, Elgabarty H et al. Time-resolved terahertz–Raman spectroscopy reveals that cations and anions distinctly modify intermolecular interactions of water[J]. Nature Chemistry, 14, 1031-1037(2022).
[95] Balos V, Bierhance G, Wolf M et al. Terahertz-magnetic-field induced ultrafast faraday rotation of molecular liquids[J]. Physical Review Letters, 124, 093201(2020).
Get Citation
Copy Citation Text
Hang Zhao, Yuejin Zhao, Liangliang Zhang, Cunlin Zhang. Research Progress on Intense, Broadband, Terahertz Wave Radiation[J]. Acta Optica Sinica, 2023, 43(15): 1532001
Category: Ultrafast Optics
Received: Mar. 30, 2023
Accepted: May. 15, 2023
Published Online: Jul. 28, 2023
The Author Email: Zhao Yuejin (yjzhao@bit.edu.cn)