Journal of the Chinese Ceramic Society, Volume. 53, Issue 6, 1520(2025)
Research Progress on Polymer-Based Solid-State Electrolyte Materials
[1] [1] LU Y X, RONG X H, HU Y S, et al. Research and development of advanced battery materials in China[J]. Energy Storage Mater, 2019, 23: 144–153.
[2] [2] CHEN R S, LI Q H, YU X Q, et al. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces[J]. Chem Rev, 2020, 120(14): 6820–6877.
[3] [3] ZHAO N, KHOKHAR W, BI Z J, et al. Solid garnet batteries[J]. Joule, 2019, 3(5): 1190–1199.
[4] [4] CHEN S J, XIE D J, LIU G Z, et al. Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application[J]. Energy Storage Mater, 2018, 14: 58–74.
[5] [5] WANG C H, LIANG J W, KIM J T, et al. Prospects of halide-based all-solid-state batteries: From material design to practical application[J]. Sci Adv, 2022, 8(36): eadc9516.
[6] [6] ZHANG X Y, CHENG S C, FU C K, et al. Advancements and challenges in organic–inorganic composite solid electrolytes for all-solid-state lithium batteries[J]. Nano Micro Lett, 2024, 17(1): 2.
[7] [7] LI W, MA L, LIU S S, et al. Thermally depolymerizable polyether electrolytes for convenient and low-cost recycling of LiTFSI[J]. Angew Chem Int Ed, 2022, 61(38): e202209169.
[8] [8] HAO S M, ZHU J X, HE S, et al. Water-in-polymer electrolyte with a wide electrochemical window and recyclability[J]. Nat Sustain, 2024, 7: 661–671.
[9] [9] FENTON D E, PARKER J M, WRIGHT P V. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14(11): 589.
[10] [10] NAGAOKA K, NARUSE H, SHINOHARA I, et al. High ionic conductivity in poly(dimethyl siloxane-co-ethylene oxide) dissolving lithium perchlorate[J]. J Polym Sci Polym Lett Ed, 1984, 22(12): 659–663.
[11] [11] WATANABE M, TOGO M, SANUI K, et al. Ionic conductivity of polymer complexes formed by poly(-propiolactone) and lithium perchlorate[J]. Macromolecules, 1984, 17(12): 2908–2912.
[12] [12] BLONSKY P M, SHRIVER D F, AUSTIN P, et al. Polyphosphazene solid electrolytes[J]. J Am Chem Soc, 1984, 106(22): 6854–6855.
[13] [13] WATANABE M, RIKUKAWA M, SANUI K, et al. Ionic conductivity of polymer complexes formed by poly(ethylene succinate) and lithium perchlorate[J]. Macromolecules, 1984, 17(12): 2902–2908.
[14] [14] BANNISTER D J, DAVIES G R, WARD I M, et al. Ionic conductivities of poly(methoxy polyethylene glycol monomethacrylate) complexes with LiSO3CH3[J]. Polymer, 1984, 25(11): 1600–1602.
[15] [15] ALAMGIR M, MOULTON R D, ABRAHAM K M. Li+-conductive polymer electrolytes derived from poly(1, 3-dioxolane) and polytetrahydrofuran[J]. Electrochim Acta, 1991, 36(5–6): 773–782.
[16] [16] WEI X Y, SHRIVER D F. Highly conductive polymer electrolytes containing rigid polymers[J]. Chem Mater, 1998, 10(9): 2307–2308.
[17] [17] SMITH M J, SILVA M M, CERQUEIRA S, et al. Preparation and characterization of a lithium ion conducting electrolyte based on poly(trimethylene carbonate)[J]. Solid State Ion, 2001, 140(3–4): 345–351.
[18] [18] YU X Y, XIAO M, WANG S J, et al. Fabrication and characterization of PEO/PPC polymer electrolyte for lithium-ion battery[J]. J Appl Polym Sci, 2010, 115(5): 2718–2722.
[19] [19] OHNO H, ITO K. Room-temperature molten salt polymers as a matrix for fast ion conduction[J]. Chem Lett, 1998, 27(8): 751–752.
[20] [20] HU P, DUAN Y L, HU D P, et al. Rigid-flexible coupling high ionic conductivity polymer electrolyte for an enhanced performance of LiMn2O4/graphite battery at elevated temperature[J]. ACS Appl Mater Interfaces, 2015, 7(8): 4720–4727.
[21] [21] WU H, TANG B, DU X F, et al. LiDFOB initiatedin situpolymerization of novel eutectic solution enables room-temperature solid lithium metal batteries[J]. Adv Sci, 2020, 7(23): 2003370.
[22] [22] PAN X Y, SUN H, WANG Z X, et al. High voltage stable polyoxalate catholyte with cathode coating for all-solid-state Li-metal/NMC622 batteries[J]. Adv Energy Mater, 2020, 10(42): 2002416.
[23] [23] LIN Z Y, GUO X W, WANG Z C, et al. A wide-temperature superior ionic conductive polymer electrolyte for lithium metal battery[J]. Nano Energy, 2020, 73: 104786.
[24] [24] WANG J C, ZHOU W J, ZHANG N, et al. Review on poly(ethylene oxide)-based solid electrolytes: key issues, potential solutions, and outlook[J]. Energy Fuels, 2024, 38(19): 18395–18412.
[25] [25] TAKAHASHI Y, TADOKORO H. Structural Studies of Polyethers, (–(CH2)m–O–)n. X. Crystal Structure of Poly(ethylene oxide)[J]. Macromolecules, 1973, 6(5): 672–675.
[26] [26] GUO B, FU Y D, WANG J N, et al. Strategies and characterization methods for achieving high performance PEO-based solid-state lithium-ion batteries[J]. Chem Commun, 2022, 58(59): 8182–8193.
[27] [27] YANG X F, JIANG M, GAO X J, et al. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: Main chain or terminal–OH group?[J]. Energy Environ Sci, 2020, 13(5): 1318–1325.
[28] [28] RONG Z L, SUN Y, YANG M, et al. How the PEG terminals affect the electrochemical properties of polymer electrolytes in lithium metal batteries[J]. Energy Storage Mater, 2023, 63: 103066.
[29] [29] BAO W D, ZHANG Y, CAO L, et al. An H2O-initiated crosslinking strategy for ultrafine-nanoclusters-reinforced high-toughness polymer- In-plasticizer solid electrolyte[J]. Adv Mater, 2023, 35(41): e2304712.
[30] [30] ZHU J, ZHAO R Q, ZHANG J P, et al. Long-cycling and high-voltage solid state lithium metal batteries enabled by fluorinated and crosslinked polyether electrolytes[J]. Angew Chem Int Ed, 2024, 63(17): e202400303.
[31] [31] YOU D L, LAI Z W, WEI W, et al. High-voltage all-solid-state lithium metal batteries enabled by localized high-salt-concentration in-chain clustering copolymer electrolytes[J]. Adv Funct Mater, 2025, 35(7): 2415464.
[32] [32] XIONG Z, WANG Z X, ZHOU W, et al. 4.2 V polymer all-solid-state lithium batteries enabled by high-concentration PEO solid electrolytes[J]. Energy Storage Mater, 2023, 57: 171–179.
[33] [33] LI J J, HU H M, FANG W H, et al. Impact of fluorine-based lithium salts on SEI for all-solid-state PEO-based lithium metal batteries[J]. Adv Funct Mater, 2023, 33(38): 2303718.
[34] [34] TONG B, SONG Z Y, FENG W F, et al. Design of a teflon-like anion for unprecedently enhanced lithium metal polymer batteries[J]. Adv Energy Mater, 2023, 13(15): 2370057.
[35] [35] SONG Z Y, TIAN M Y, ZHU J, et al. Super SEI-forming anion for enhanced interfacial stability in solid-state lithium metal batteries[J]. Adv Mater, 2024, 36(47): 2410954.
[36] [36] YANG X F, SUN Q, ZHAO C T, et al. Self-healing electrostatic shield enabling uniform lithium deposition in all-solid-state lithium batteries[J]. Energy Storage Mater, 2019, 22: 194–199.
[37] [37] WU K, LI A, TAN J, et al. SnF2-catalyzed lithiophilic–lithiophobic gradient interface for high-rate PEO-based all-solid-state batteries[J]. Angew Chem Int Ed, 2024, 63(44): e202410347.
[38] [38] AN H W, LI M L, LIU Q S, et al. Strong Lewis-acid coordinated PEO electrolyte achieves 4.8 V-class all-solid-state batteries over 580 Wh kg-1[J]. Nat Commun, 2024, 15(1): 9150.
[39] [39] ZHANG H, DENG J H, XU H T, et al. Molecule crowding strategy in polymer electrolytes inducing stable interfaces for all-solid-state lithium batteries[J]. Adv Mater, 2024, 36(31): e2403848.
[40] [40] LI R Y, HUA H M, YANG X Y, et al. The deconstruction of a polymeric solvation cage: A critical promotion strategy for PEO-based all-solid polymer electrolytes[J]. Energy Environ Sci, 2024, 17(15): 5601–5612.
[41] [41] LIN D C, LIU W, LIU Y Y, et al. High ionic conductivity of composite solid polymer electrolytevia in situsynthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide)[J]. Nano Lett, 2016, 16(1): 459–465.
[42] [42] OU C, YE S Y, LI Z J, et al. The intermolecular interaction enables ordered ion transport in quasi-solid-state electrolyte for ultra-long life lithium-metal battery[J]. Energy Storage Mater, 2024, 67: 103277.
[43] [43] WANG W K, YANG Y F, YANG J, et al. Neuron-like silicone Nanofilaments@Montmorillonite nanofillers of PEO-based solid-state electrolytes for lithium metal batteries with wide operation temperature[J]. Angew Chem Int Ed, 2024, 63(34): e202400091.
[44] [44] PAN K C, ZHANG L, QIAN W W, et al. A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries[J]. Adv Mater, 2020, 32(17): e2000399.
[45] [45] LI Z, HUANG H M, ZHU J K, et al. Ionic conduction in composite polymer electrolytes: Case of PEO: Ga–LLZO composites[J]. ACS Appl Mater Interfaces, 2019, 11(1): 784–791.
[46] [46] DU A, LU H T, LIU S S, et al. Breaking the trade-off between ionic conductivity and mechanical strength in solid polymer electrolytes for high-performance solid lithium batteries[J]. Adv Energy Mater, 2024, 14(31): 2400808.
[47] [47] YU D Y, MIN J, LIN F, et al. Mechanically and thermally robust gel electrolytes built from A charged double helical polymer[J]. Adv Mater, 2024, 36(24): e2312513.
[48] [48] CHENG Y, CAI Z C, XU J L, et al. Zwitterionic cellulose-based polymer electrolyte enabled by aqueous solution casting for high-performance solid-state batteries[J]. Angew Chem Int Ed, 2024, 63(30): e202400477.
[49] [49] ZHOU W D, WANG Z X, PU Y, et al. Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries[J]. Adv Mater, 2019, 31(4): 1805574.
[50] [50] YE Q, LIANG H Y, WANG S H, et al. Fabricating a PVDF skin for PEO-based SPE to stabilize the interface both at cathode and anode for Li-ion batteries[J]. J Energy Chem, 2022, 70: 356–362.
[51] [51] YI M Y, LI J, WANG M R, et al. Suppressing structural degradation of single crystal nickel-rich cathodes in PEO-based all-solid-state batteries: Mechanistic insight and performance[J]. Energy Storage Mater, 2023, 54: 579–588.
[52] [52] ZHENG J G, SUN C G, WANG Z X, et al. Double ionic-electronic transfer interface layers for all-solid-state lithium batteries[J]. Angew Chem Int Ed, 2021, 60(34): 18448–18453.
[53] [53] HALAT D M, SNYDER R L, SUNDARARAMAN S, et al. Modifying Li+ and anion diffusivities in polyacetal electrolytes: A pulsed-field- gradient NMR study of ion self-diffusion[J]. Chem Mater, 2021, 33(13): 4915–4926.
[54] [54] SONG Z Y, WANG X X, WU H, et al. Bis(fluorosulfonyl)imide-based electrolyte for rechargeable lithium batteries: A perspective[J]. J Power Sources Adv, 2022, 14: 100088.
[55] [55] LI Z, WANG L, HUANG X D, et al. Lithium bis(trifluoromethanesulfonyl) imide (LiTFSI): A prominent lithium salt in lithium-ion battery electrolytes– fundamentals, progress, and future perspectives[J]. Adv Funct Mater, 2024, 34(48): 2408319.
[56] [56] XU Z, ZHANG X, YANG J, et al. High-voltage and intrinsically safe electrolytes for Li metal batteries[J]. Nat Commun, 2024, 15(1): 9856.
[57] [57] QIAO L X, RODRIGUEZ PEA S, MARTNEZ-IBAEZ M, et al. Anion – stacking for improved lithium transport in polymer electrolytes[J]. J Am Chem Soc, 2022, 144(22): 9806–9816.
[58] [58] CHEN X, ZHANG Q. Atomic insights into the fundamental interactions in lithium battery electrolytes[J]. Acc Chem Res, 2020, 53(9): 1992–2002.
[59] [59] ZHOU Q, MA J, DONG S M, et al. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries[J]. Adv Mater, 2019, 31(50): 1902029.
[60] [60] XU B Y, LI X Y, YANG C, et al. Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities[J]. J Am Chem Soc, 2021, 143(17): 6542–6550.
[61] [61] FANG R Y, XU B Y, GRUNDISH N S, et al. Li2S6-integrated PEO-based polymer electrolytes for all-solid-state lithium-metal batteries[J]. Angew Chem Int Ed, 2021, 60(32): 17701–17706.
[62] [62] SHENG O W, ZHENG J H, JU Z J, et al.In situconstruction of a LiF-enriched interface for stable all-solid-state batteries and its origin revealed by cryo-TEM[J]. Adv Mater, 2020, 32(34): 2000223.
[63] [63] XU J R, LI J M, LI Y X, et al. Long-life lithium-metal all-solid-state batteries and stable Li plating enabled byin situformation of Li3PS4 in the SEI layer[J]. Adv Mater, 2022, 34(34): e2203281.
[64] [64] WEI Y, LIU T H, ZHOU W J, et al. Enabling all-solid-state Li metal batteries operated at 30 ℃ by molecular regulation of polymer electrolyte[J]. Adv Energy Mater, 2023, 13(10): 2203547.
[65] [65] GUO W Q, LIU Q, WU K, et al. Tailoring heterogeneous interfacial chemistry enables long-term cycling of all-solid-state lithium-metal batteries[J]. Energy Storage Mater, 2023, 63: 103006.
[66] [66] ZHANG Z, WANG J L, ZHANG S L, et al. Stable all-solid-state lithium metal batteries with Li3N–LiF-enriched interface induced by lithium nitrate addition[J]. Energy Storage Mater, 2021, 43: 229–237.
[67] [67] SHENG O W, HU H L, LIU T F, et al. Interfacial and ionic modulation of poly (ethylene oxide) electrolytevialocalized iodization to enable dendrite-free lithium metal batteries[J]. Adv Funct Mater, 2022, 32(14): 2111026.
[68] [68] WANG H N, HOU T Y, CHENG H, et al. Bifunctional LiI additive for poly(ethylene oxide) electrolyte with high ionic conductivity and stable interfacial chemistry[J]. J Energy Chem, 2022, 71: 218–224.
[69] [69] ZHOU H Y, OU Y, YAN S S, et al. Supramolecular polymer ion conductor with weakened Li ion solvation enables room temperature all-solid-state lithium metal batteries[J]. Angew Chem Int Ed, 2023, 62(35): e202306948.
[70] [70] CROCE F, APPETECCHI G B, PERSI L, et al. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature, 1998, 394: 456–458.
[71] [71] REDDY M J, CHU P P, KUMAR J S, et al. Inhibited crystallization and its effect on conductivity in a nano-sized Fe oxide composite PEO solid electrolyte[J]. J Power Sources, 2006, 161(1): 535–540.
[72] [72] ZHANG Y, BAO W D, LI H Y, et al. Incorporating highly dispersed alumina in PEO-based solid electrolytes by vapor phase infiltration for all-solid-state lithium metal batteries[J]. Mater Today Energy, 2022, 28: 101074.
[73] [73] WANG C, YANG T Q, ZHANG W K, et al. Hydrogen bonding enhanced SiO2/PEO composite electrolytes for solid-state lithium batteries[J]. J Mater Chem A, 2022, 10(7): 3400–3408.
[74] [74] CROCE F, PERSI L, SCROSATI B, et al. Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes[J]. Electrochim Acta, 2001, 46(16): 2457–2461.
[75] [75] LIU W, LIN D C, SUN J, et al. Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires[J]. ACS Nano, 2016, 10(12): 11407–11413.
[76] [76] FU C K, LOU S F, XU X, et al. Capacity degradation mechanism and improvement actions for 4 V-class all-solid-state lithium-metal polymer batteries[J]. Chem Eng J, 2020, 392: 123665.
[77] [77] SU Y X, XU F, ZHANG X R, et al. Rational design of high-performance PEO/ceramic composite solid electrolytes for lithium metal batteries[J]. Nanomicro Lett, 2023, 15(1): 82.
[78] [78] LIU L H, CHU L H, JIANG B, et al. Li1.4Al0.4Ti1.6(PO4)3 nanoparticle-reinforced solid polymer electrolytes for all-solid-state lithium batteries[J]. Solid State Ion, 2019, 331: 89–95.
[79] [79] HU X K, CHENG Y, DONG G Y, et al. Cation framework nanowires enabling composite solid-state electrolyte with anion exchange platform for rapid Li+ conduction[J]. Adv Funct Mater, 2024, 34(32): 2316018.
[80] [80] LI J, CAI Y J, ZHANG F J, et al. Exceptional interfacial conduction and LiF interphase for ultralong life PEO-based all-solid-state batteries[J]. Nano Energy, 2023, 118: 108985.
[81] [81] ZHANG X K, XIE J, SHI F F, et al. Vertically aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity[J]. Nano Lett, 2018, 18(6): 3829–3838.
[82] [82] HUANG Z Y, PANG W Y, LIANG P, et al. A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: Enhanced thermal and electrochemical properties[J]. J Mater Chem A, 2019, 7(27): 16425–16436.
[83] [83] LI K, WANG J F, SHEN Q Y, et al. Interfacial design strategy for polymeric lithium metal batteries with superfast charge-transfer kinetics[J]. Adv Energy Mater, 2024, 14(27): 2400956.
[84] [84] NIE K H, WANG X L, QIU J L, et al. Increasing poly(ethylene oxide) stability to 4.5 V by surface coating of the cathode[J]. ACS Energy Lett, 2020, 5(3): 826–832.
[85] [85] ROSENBACH D, MDL N, HAHN M, et al. Synthesis and comparative studies of solvent-free brush polymer electrolytes for lithium batteries[J]. ACS Appl Energy Mater, 2019, 2(5): 3373–3388.
[86] [86] WANG Z Y, SHEN L, DENG S G, et al. 10 m-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries[J]. Adv Mater, 2021, 33(25): e2100353.
[87] [87] WANG S, ZHANG L, ZENG Q H, et al. Cellulose microcrystals with brush-like architectures as flexible all-solid-state polymer electrolyte for lithium-ion battery[J]. ACS Sustainable Chem Eng, 2020, 8(8): 3200–3207.
[88] [88] ZHOU M H, LIU R L, JIA D Y, et al. Ultrathin yet robust single lithium-ion conducting quasi-solid-state polymer-brush electrolytes enable ultralong-life and dendrite-free lithium-metal batteries[J]. Adv Mater, 2021, 33(29): e2100943.
[89] [89] XU H F, YANG D J, NIU Y X, et al. Deciphering and integrating functionalized side chains for high ion-conductive elastic ternary copolymer solid-state electrolytes for safe lithium metal batteries[J]. Angew Chem Int Ed, 2024, 63(36): e202406637.
[90] [90] WANG T Y, ZHANG Y M, HUANG X Y, et al. Designing weakly and strongly solvating polymer electrolytes: Systematically boosting high-voltage lithium metal batteries[J]. SusMat, 2024, 4(4): e219.
[91] [91] QIN S Y, YU Y N, ZHANG J Y, et al. Separator-freein situdual-curing solid polymer electrolytes with enhanced interfacial contact for achieving ultrastable lithium-metal batteries[J]. Adv Energy Mater, 2023, 13(34): 2301470.
[92] [92] YAN Y Y, JU J W, DONG S M, et al.In situpolymerization permeated three-dimensional Li+-percolated porous oxide ceramic framework boosting all solid-state lithium metal battery[J]. Adv Sci, 2021, 8(9): 2003887.
[93] [93] LIN D C, YUEN P Y, LIU Y Y, et al. A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus[J]. Adv Mater, 2018, 30(32): e1802661.
[94] [94] ZHANG Z B, LIU X F, WANG D, et al. Architecting obliquitous and rich ion transport bridges in polymer electrolytes for room temperature long-life solid-state batteries[J]. Energy Storage Mater, 2024, 69: 103419.
[95] [95] AN H W, LIU Q S, AN J L, et al. Coupling two-dimensional fillers with polymer chains in solid polymer electrolyte for room-temperature dendrite-free lithium-metal batteries[J]. Energy Storage Mater, 2021, 43: 358–364.
[96] [96] ZHANG S M, CHEN W, HAO W, et al. A composite gel polymer electrolyte by incorporating modified POSS endowing inorganic-rich SEI formation and stable cycle life for lithium metal batteries[J]. Chem Eng J, 2024, 484: 149499.
[97] [97] ZHANG K, WU F, WANG X R, et al. 8.5 μm-thick flexible-rigid hybrid solid–electrolyte/lithium integration for air-stable and interface-compatible all-solid-state lithium metal batteries[J]. Adv Energy Mater, 2022, 12(24): 2200368.
[98] [98] GONG Y Q, WANG C H, XIN M Y, et al. Ultra-thin and high-voltage-stable bi-phasic solid polymer electrolytes for high-energy- density Li metal batteries[J]. Nano Energy, 2024, 119: 109054.
[99] [99] ZHANG D C, LIU Y X, SUN Z Y, et al. Eutectic-based polymer electrolyte with the enhanced lithium salt dissociation for high- performance lithium metal batteries[J]. Angew Chem Int Ed, 2023, 62(44): e202310006.
[100] [100] YANG H, JING M X, WANG L, et al. PDOL-based solid electrolyte toward practical application: Opportunities and challenges[J]. Nanomicro Lett, 2024, 16(1): 127.
[101] [101] LIU F Q, WANG W P, YIN Y X, et al. Upgrading traditional liquid electrolytevia in situgelation for future lithium metal batteries[J]. Sci Adv, 2018, 4(10): eaat5383.
[102] [102] ZHAO Q, LIU X, STALIN S, et al. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries[J]. Nat Energy, 2019, 4: 365–373.
[103] [103] LI D W, GAO D J, TIAN D H, et al. SnF2-catalyzed formation of polymerized dioxolane as solid electrolyte and its thermal decomposition behavior[J]. Angew Chem Int Ed, 2022, 61(6): e202114805.
[104] [104] YANG S J, YUAN H, YAO N, et al. Intrinsically safe lithium metal batteries enabled by thermo-electrochemical compatiblein situpolymerized solid-state electrolytes[J]. Adv Mater, 2024, 36(35): e2405086.
[105] [105] MU K X, WANG D, DONG W L, et al. Hybrid crosslinked solid polymer electrolytevia in situsolidification enables high-performance solid-state lithium metal batteries[J]. Adv Mater, 2023, 35(47): e2304686.
[106] [106] SONG S F, GAO W L, YANG G M, et al. Hybrid poly-ether/ carbonate ester electrolyte engineering enables high oxidative stability for quasi-solid-state lithium metal batteries[J]. Mater Today Energy, 2022, 23: 100893.
[107] [107] CHEN X F, QIN C H, CHU F L, et al. Contriving a gel polymer electrolyte to drive quasi-solid-state high-voltage Li metal batteries at ultralow temperatures[J]. Energy Environ Sci, 2025, 18(2): 910–922.
[108] [108] XU P, GAO Y C, HUANG Y X, et al. Solvation regulation reinforces anion-derived inorganic-rich interphase for high-performance quasi-solid-state Li metal batteries[J]. Adv Mater, 2024, 36(44): e2409489.
[109] [109] UTOMO N W, DENG Y, ZHAO Q, et al. Structure and evolution of quasi-solid-state hybrid electrolytes formed inside electrochemical cells[J]. Adv Mater, 2022, 34(32): e2110333.
[110] [110] YANG H, ZHANG B, JING M X, et al.In situcatalytic polymerization of a highly homogeneous PDOL composite electrolyte for long-cycle high-voltage solid-state lithium batteries (adv. energy mater. 39/2022)[J]. Adv Energy Mater, 2022, 12(39): 2270162.
[111] [111] CHEN Y, HUO F, CHEN S M, et al. In-built quasi-solid-state poly-ether electrolytes enabling stable cycling of high-voltage and wide-temperature Li metal batteries[J]. Adv Funct Mater, 2021, 31(36): 2102347.
[112] [112] WANG Y X, LI T Y, YANG X F, et al. 2D solid-electrolyte interphase built by high-concentration polymer electrolyte for highly reversible silicon anodes[J]. Adv Energy Mater, 2024, 14(2): 2303189.
[113] [113] ZHAO C Z, ZHAO Q, LIU X, et al. Rechargeable lithium metal batteries with an in-built solid-state polymer electrolyte and a high voltage/loading Ni-rich layered cathode[J]. Adv Mater, 2020, 32(12): e1905629.
[114] [114] DENG H Y, YANG X T, CHEN H H, et al. Superior initiator reactivity and electrochemical properties of In(OTf)3 over Sn(OTf)2 for 1, 3-dioxolane based solid polymer electrolyte[J]. J Energy Storage, 2024, 100: 113693.
[115] [115] ZHAO Q, LIU X, ZHENG J X, et al. Designing electrolytes with polymerlike glass-forming properties and fast ion transport at low temperatures[J]. Proc Natl Acad Sci USA, 2020, 117(42): 26053–26060.
[116] [116] WANG Z L, WANG Y H, SHEN L Y, et al. Towards durable practical lithium–metal batteries: Advancing the feasibility of poly-DOL-based quasi-solid-state electrolytesviaa novel nitrate-based additive[J]. Energy Environ Sci, 2023, 16(9): 4084–4092.
[117] [117] MA Z H, RUAN D G, WANG D Z, et al. Selective methylation of cyclic ether towards highly elastic solid electrolyte interphase for silicon-based anodes[J]. Angew Chem Int Ed, 2025, 64(2): e202414859.
[118] [118] LIU Y, ZOU H Q, HUANG Z L, et al.In situpolymerization of 1, 3-dioxane as a highly compatible polymer electrolyte to enable the stable operation of 4.5 V Li-metal batteries[J]. Energy Environ Sci, 2023, 16(12): 6110–6119.
[119] [119] ZHANG Q K, ZHANG X Q, WAN J, et al. Homogeneous and mechanically stable solid–electrolyte interphase enabled by trioxane-modulated electrolytes for lithium metal batteries[J]. Nat Energy, 2023, 8: 725–735.
[120] [120] LI Z, YU R, WENG S T, et al. Tailoring polymer electrolyte ionic conductivity for production of low-temperature operating quasi-all-solid- state lithium metal batteries[J]. Nat Commun, 2023, 14(1): 482.
[121] [121] CHEN Y, ZHANG Y, NIU J D, et al. Poly(ether-ester)-based solid polymer electrolytes with high Li-ion transference number for high voltage all-solid-state lithium metal batteries[J]. ACS Appl Energy Mater, 2023, 6(5): 3113–3125.
[122] [122] CHEN Y H, HSIEH Y C, LIU K L, et al. Green polymer electrolytes based on polycaprolactones for solid-state high-voltage lithium metal batteries[J]. Macromol Rapid Commun, 2022, 43(20): 2200335.
[123] [123] SUN M J, ZENG Z Q, ZHONG W, et al.In situprepared “polymer-in-salt” electrolytes enabling high-voltage lithium metal batteries[J]. J Mater Chem A, 2022, 10(21): 11732–11741.
[124] [124] ZHANG B H, LIU Y L, PAN X M, et al. Dendrite-free lithium metal solid battery with a novel polyester based triblock copolymer solid-state electrolyte[J]. Nano Energy, 2020, 72: 104690.
[125] [125] ZHOU L Y, LIU S C, LI W, et al. Highly conductive Poly(- caprolactone) and chitosan based polymer electrolyte for lithium metal battery[J]. J Power Sources, 2023, 553: 232271.
[126] [126] ZHANG B H, LIU Y L, LIU J, et al. “Polymer-in-ceramic” based poly(Ɛ-caprolactone)/ceramic composite electrolyte for all-solid-state batteries[J]. J Energy Chem, 2021, 52: 318–325.
[127] [127] SUN H, XIE X X, HUANG Q, et al. Fluorinated poly-oxalate electrolytes stabilizing both anode and cathode interfaces for all-solid-state Li/NMC811 batteries[J]. Angew Chem Int Ed, 2021, 60(33): 18335–18343.
[128] [128] XIE X X, ZHANG P, LI X H, et al. Rational design of F-modified polyester electrolytes for sustainable all-solid-state lithium metal batteries[J]. J Am Chem Soc, 2024, 146(9): 5940–5951.
[129] [129] ZHANG J J, ZHAO J H, YUE L P, et al. Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries[J]. Adv Energy Mater, 2015, 5(24): 1501082.
[130] [130] SNGELAND C, HERNNDEZ G, BRANDELL D, et al. Dissecting the solid polymer electrolyte-electrode interface in the vicinity of electrochemical stability limits[J]. ACS Appl Mater Interfaces, 2022, 14(25): 28716–28728.
[131] [131] MINDEMARK J, TRM E, SUN B, et al. Copolymers of trimethylene carbonate and -caprolactone as electrolytes for lithium- ion batteries[J]. Polymer, 2015, 63: 91–98.
[132] [132] BARBOSA P C, RODRIGUES L C, SILVA M M, et al. Characterization of pTMCnLiPF6 solid polymer electrolytes[J]. Solid State Ion, 2011, 193(1): 39–42.
[133] [133] KWON S J, KIM D G, SHIM J, et al. Preparation of organic/inorganic hybrid semi-interpenetrating network polymer electrolytes based on poly(ethylene oxide-co-ethylene carbonate) for all-solid-state lithium batteries at elevated temperatures[J]. Polymer, 2014, 55(12): 2799–2808.
[134] [134] YUE H Y, LI J X, WANG Q X, et al. Sandwich-like poly(propylene carbonate)-based electrolyte for ambient-temperature solid-state lithium ion batteries[J]. ACS Sustainable Chem Eng, 2018, 6(1): 268–274.
[135] [135] WANG C, ZHANG H R, LI J D, et al. The interfacial evolution between polycarbonate-based polymer electrolyte and Li-metal anode[J]. J Power Sources, 2018, 397: 157–161.
[136] [136] COMMARIEU B, PAOLELLA A, COLLIN-MARTIN S, et al. Solid-to-liquid transition of polycarbonate solid electrolytes in Li-metal batteries[J]. J Power Sources, 2019, 436: 226852.
[137] [137] XIE X X, WANG Z X, HE S, et al. Influencing factors on Li-ion conductivity and interfacial stability of solid polymer electrolytes, exampled by polycarbonates, polyoxalates and polymalonates[J]. Angew Chem Int Ed, 2023, 62(13): e202218229.
[138] [138] SUN M J, ZENG Z Q, PENG L F, et al. Ultrathin polymer electrolyte film prepared byin situpolymerization for lithium metal batteries[J]. Mater Today Energy, 2021, 21: 100785.
[139] [139] WANG Y, CHEN S S, LI Z Y, et al.In-situgeneration of fluorinated polycarbonate copolymer solid electrolytes for high-voltage Li-metal batteries[J]. Energy Storage Mater, 2022, 45: 474–483.
[140] [140] ZHENG F, LI H T, ZHENG Y Z, et al. Trimethyl phosphate-enhanced polyvinyl carbonate polymer electrolyte with improved interfacial stability for solid-state lithium battery[J]. Rare Met, 2022, 41(6): 1889–1898.
[141] [141] YE G, ZHU L J, MA Y, et al. Molecular design of solid polymer electrolytes with enthalpy-entropy manipulation for Li metal batteries with aggressive cathode chemistry[J]. J Am Chem Soc, 2024, 146(40): 27668–27678.
[142] [142] ZHOU Q J, FU C K, LI R L, et al. Poly (vinyl ethylene carbonate)-based dual-salt gel polymer electrolyte enabling high voltage lithium metal batteries[J]. Chem Eng J, 2022, 437: 135419.
[143] [143] WANG P, CHAI J C, ZHANG Z H, et al. An intricately designed poly(vinylene carbonate-acrylonitrile) copolymer electrolyte enables 5 V lithium batteries[J]. J Mater Chem A, 2019, 7(10): 5295–5304.
[144] [144] CHAI J C, LIU Z H, MA J, et al.In situgeneration of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries[J]. Adv Sci, 2017, 4(2): 1600377.
[145] [145] WANG H C, YANG Y L, GAO C, et al. An entanglement association polymer electrolyte for Li-metal batteries[J]. Nat Commun, 2024, 15(1): 2500.
[146] [146] TANG L F, CHEN B W, ZHANG Z H, et al. Polyfluorinated crosslinker-based solid polymer electrolytes for long-cycling 4.5 V lithium metal batteries[J]. Nat Commun, 2023, 14(1): 2301.
[147] [147] SHAN X Y, MOREY M, LI Z X, et al. A polymer electrolyte with high cationic transport number for safe and stable solid Li-metal batteries[J]. ACS Energy Lett, 2022, 7(12): 4342–4351.
[148] [148] BAI M, TANG X Y, ZHANG M, et al. Anin situpolymerization strategy for gel polymer electrolyte Si||Ni-rich lithium-ion batteries[J]. Nat Commun, 2024, 15(1): 5375.
[149] [149] PENG H, LONG T R, PENG J, et al. Molecular design forin situpolymerized solid polymer electrolytes enabling stable cycling of lithium metal batteries[J]. Adv Energy Mater, 2024, 14(22): 2400428.
[150] [150] QIN S P, WU M, ZHAO H S, et al. Anin situcross-linked network PMMA-based gel polymer electrolyte with excellent lithium storage performance[J]. J Mater Sci Technol, 2024, 199: 197–205.
[151] [151] TONG R A, HUANG Y L, FENG C, et al.In-situpolymerization confined PEGDME-based composite quasi-solid-state electrolytes for lithium metal batteries[J]. Adv Funct Mater, 2024, 34(30): 2315777.
[152] [152] XUE J X, LIU F Q, XIANG T Q, et al.In situforming gel polymer electrolyte for high energy-density lithium metal batteries[J]. Small, 2024, 20(4): e2307553.
[153] [153] ZHAI Y F, HOU W S, TAO M M, et al. Enabling high-voltage “superconcentrated ionogel-in-ceramic” hybrid electrolyte with ultrahigh ionic conductivity and single Li+-ion transference number[J]. Adv Mater, 2022, 34(39): 2205560.
[154] [154] ZHANG L B, BAI M H, WANG X H, et al. A strong nucleophilic fluorination agent to achieve highly stablein situ3D cross-linked gel polymer electrolyte for lithium-ion batteries[J]. Chem Eng J, 2024, 481: 148579.
[155] [155] MA Q, FU S, WU A J, et al. Designing bidirectionally functional polymer electrolytes for stable solid lithium metal batteries[J]. Adv Energy Mater, 2023, 13(11): 2203892.
[156] [156] LI Z, FU J L, ZHOU X Y, et al. Ionic conduction in polymer-based solid electrolytes[J]. Adv Sci, 2023, 10(10): e2201718.
[157] [157] LI P Y, WANG S Y, HAO J J, et al. Efficiencies of variousin situpolymerizations of liquid electrolytes and the practical implications for quasi solid-state batteries[J]. Angew Chem Int Ed, 2023, 62(38): e202309613.
[158] [158] JU J W, WANG Y T, CHEN B B, et al. Integrated interface strategy toward room temperature solid-state lithium batteries[J]. ACS Appl Mater Interfaces, 2018, 10(16): 13588–13597.
[159] [159] LIN Z Y, GUO X W, ZHANG R, et al. Molecular structure adjustment enhanced anti-oxidation ability of polymer electrolyte for solid-state lithium metal battery[J]. Nano Energy, 2022, 98: 107330.
[160] [160] HOSSEINIOUN A, NRNBERG P, SCHNHOFF M, et al. Improved lithium ion dynamics in crosslinked PMMA gel polymer electrolyte[J]. RSC Adv, 2019, 9(47): 27574–27582.
[161] [161] LIU F Z, WANG J Y, CHEN W Y, et al. Polymer-ion interaction prompted quasi-solid electrolyte for room-temperature high-performance lithium-ion batteries[J]. Adv Mater, 2024, 36(45): e2409838.
[162] [162] YE X, LIANG J N, HU J T, et al. An ultra-thin polymer electrolyte for 4.5 V high voltage LiCoO2 quasi-solid-state battery[J]. Chem Eng J, 2023, 455: 140846.
[163] [163] LIU C, ZHU F Y, HUANG Z H, et al. An integrate and ultra-flexible solid-state lithium battery enabled byin situpolymerized solid electrolyte[J]. Chem Eng J, 2022, 434: 134644.
[164] [164] SUN Q F, WANG S, MA Y, et al. Li-ion transfer mechanism of gel polymer electrolyte with sole fluoroethylene carbonate solvent[J]. Adv Mater, 2023, 35(28): e2300998.
Get Citation
Copy Citation Text
FU Junjun, HAO Jinjin, XIE Xiaoxin, ZHOU Weidong. Research Progress on Polymer-Based Solid-State Electrolyte Materials[J]. Journal of the Chinese Ceramic Society, 2025, 53(6): 1520
Category:
Received: Dec. 31, 2024
Accepted: Jul. 11, 2025
Published Online: Jul. 11, 2025
The Author Email: XIE Xiaoxin (xiexiaoxin1225@163.com)