Chinese Journal of Lasers, Volume. 49, Issue 16, 1602017(2022)

Effect of Laser Shock Peening on Microstructure and Properties of Laser Additive Manufactured TC4 Titanium Alloy

Xuepeng Chen1, Lingfeng Zhang1,2、*, Yi Xiong1,2, Gaoli Luo1, and Yongli Wu1
Author Affiliations
  • 1School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, Henan, China
  • 2Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal New Materials and Advanced Processing Technology, Luoyang 471023, Henan, China
  • show less
    References(47)

    [1] Zhang S, Gui R Z, Wei Q S et al. Cracking behavior and formation mechanism of TC4 alloy formed by selective laser melting[J]. Journal of Mechanical Engineering, 49, 21-27(2013).

    [2] Yuan G S, Yan L P, Han Y Y. Application progress of titanium alloy[J]. Hot Working Technology, 46, 13-16(2017).

    [3] Zhang J K, Kong X Y, Ma S J et al. Laser additive manufactured high strength-toughness TC11 titanium alloy: mechanical properties and application in airframe load-bearing structure[J]. Acta Aeronautica et Astronautica Sinica, 42, 525430(2021).

    [4] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).

    [5] Wang H M. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 35, 2690-2698(2014).

    [6] Zhang J L, Li F L, Zhang H J. Research progress on preparation of metallic materials by selective laser melting[J]. Laser & Optoelectronics Progress, 56, 100003(2019).

    [7] Liu J W, Guo K, Wang G C et al. Materials and development states of laser additive manufactured metal-based alloys[J]. Laser Journal, 41, 6-16(2020).

    [8] Gu D D, Meiners W, Wissenbach K et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. International Materials Reviews, 57, 133-164(2012).

    [9] Donoghue J, Sidhu J, Wescott A et al. Integration of deformation processing with additive manufacture of Ti-6Al-4V components for improved β grain structure and texture[M]. TMS 2015 144th Annual Meeting & Exhibition, 437-444(2016).

    [10] Yang Y Q, Chen J, Song C H et al. Current status and progress on technology of selective laser melting of metal parts[J]. Laser & Optoelectronics Progress, 55, 011401(2018).

    [11] Huang W D, Lin X, Chen J[M]. Laser stereoscopic forming: rapid free forming of high-performance dense metal parts, 126-142(2007).

    [12] Zhu Y Y, Li J, Tian X J et al. Microstructure and mechanical properties of hybrid fabricated Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy by laser additive manufacturing[J]. Materials Science and Engineering: A, 607, 427-434(2014).

    [13] Zhang X S, Wang Q Y, Zheng H B et al. Current situation of study on residual stress and stress corrosion of alloy materials in laser additive manufacturing[J]. Laser & Optoelectronics Progress, 59, 1300001(2022).

    [14] Qi Z J, Zhang X X, Wang Y Y et al. Effect of B on microstructure and tensile properties of laser additive manufactured TC4 alloy[J]. Chinese Journal of Lasers, 47, 0602002(2020).

    [15] Zhan Y, Xu H X, Du W Q et al. Research on the influence of heat treatment on residual stress of TC4 alloy produced by laser additive manufacturing based on laser ultrasonic technique[J]. Ultrasonics, 115, 106466(2021).

    [16] Ji L, Lu J P, Tang S Y et al. Research on mechanisms and controlling methods of macro defects in TC4 alloy fabricated by wire additive manufacturing[J]. Materials, 11, 1104(2018).

    [17] Liao Y L, Ye C, Cheng G J. A review: warm laser shock peening and related laser processing technique[J]. Optics & Laser Technology, 78, 15-24(2016).

    [18] Martinez H A, Francis J A, Stevens N P C. An assessment of residual stress mitigation strategies for laser clad deposits[J]. Materials Science and Technology, 32, 1484-1494(2016).

    [19] Sun R J, Li L H, Zhu Y et al. Microstructure, residual stress and tensile properties control of wire-arc additive manufactured 2319 aluminum alloy with laser shock peening[J]. Journal of Alloys and Compounds, 747, 255-265(2018).

    [20] Shiva S, Palani I A, Paul C P et al. Comparative investigation on the effects of laser annealing and laser shock peening on the as-manufactured Ni-Ti shape memory alloy structures developed by laser additive manufacturing[M]. Dixit U S, Joshi S N, Davim P. Application of lasers in manufacturing. Lecture notes on multidisciplinary industrial engineering, 1-20(2019).

    [21] Guo W, Sun R J, Song B W et al. Laser shock peening of laser additive manufactured Ti6Al4V titanium alloy[J]. Surface and Coatings Technology, 349, 503-510(2018).

    [22] Hackel L, Rankin J R, Rubenchik A et al. Laser peening: a tool for additive manufacturing post-processing[J]. Additive Manufacturing, 24, 67-75(2018).

    [23] Lin X, Huang W D. Laser additive manufacturing of high-performance metal components[J]. Scientia Sinica (Informationis), 45, 1111-1126(2015).

    [24] Qin L Y, Wu J B, Wang W et al. Microstructures and fatigue properties of Ti-6Al-2Mo-2Sn-2Zr-2Cr-2V titanium alloy fabricated using laser deposition manufacturing[J]. Chinese Journal of Lasers, 47, 1002008(2020).

    [25] Zhu Y Y, Tian X J, Li J et al. Microstructure evolution and layer bands of laser melting deposition Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J]. Journal of Alloys and Compounds, 616, 468-474(2014).

    [26] Ren H S, Tian X J, Liu D et al. Microstructural evolution and mechanical properties of laser melting deposited T-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 25, 1856-1864(2015).

    [27] Wen M, Liu G, Gu J F et al. Dislocation evolution in titanium during surface severe plastic deformation[J]. Applied Surface Science, 255, 6097-6102(2009).

    [28] Zan Y X, Jia W J, Zhao H Z et al. Effect of laser shock processing on residual stress and microstructure of Ti834 titanium alloy[J]. Rare Metal Materials and Engineering, 48, 3535-3540(2019).

    [29] Pan X L, Wang X D, Tian Z et al. Effect of dynamic recrystallization on texture orientation and grain refinement of Ti6Al4V titanium alloy subjected to laser shock peening[J]. Journal of Alloys and Compounds, 850, 156672(2021).

    [30] Kheradmandfard M, Kashani-Bozorg S F, Kang K H et al. Simultaneous grain refinement and nanoscale spinodal decomposition of β phase in Ti-Nb-Ta-Zr alloy induced by ultrasonic mechanical impacts[J]. Journal of Alloys and Compounds, 738, 540-549(2018).

    [31] Sundar R, Sudha C, Rai A K et al. Effect of laser shock peening on the microstructure, tensile and heat transport properties of alloy D9[J]. Lasers in Manufacturing and Materials Processing, 7, 259-277(2020).

    [32] Dhakal B, Swaroop S. Effect of laser shock peening on mechanical and microstructural aspects of 6061-T6 aluminum alloy[J]. Journal of Materials Processing Technology, 282, 116640(2020).

    [33] Liu Y, Qin S W, Zhang J Z et al. Influence of transformation plasticity on the distribution of internal stress in three water-quenched cylinders[J]. Metallurgical and Materials Transactions A, 48, 4943-4956(2017).

    [34] Yin M G, Cai Z B, Li Z Y et al. Improving impact wear resistance of Ti-6Al-4V alloy treated by laser shock peening[J]. Transactions of Nonferrous Metals Society of China, 29, 1439-1448(2019).

    [35] Jiao Q Y, Han P P, Lu Y et al. Effect of laser shock peening on residual stress and mechanical properties of TA15 titanium alloy[J]. Journal of Plasticity Engineering, 28, 146-152(2021).

    [36] Lu Y, Sun G F, Wang Z D et al. The effects of laser peening on laser additive manufactured 316L steel[J]. The International Journal of Advanced Manufacturing Technology, 107, 2239-2249(2020).

    [37] Yan X L, Wang F, Deng L M et al. Effect of laser shock peening on the microstructures and properties of oxide-dispersion-strengthened austenitic steels[J]. Advanced Engineering Materials, 20, 1700641(2018).

    [38] Liu Y G, Li M Q, Liu H J. Surface nanocrystallization and gradient structure developed in the bulk TC4 alloy processed by shot peening[J]. Journal of Alloys and Compounds, 685, 186-193(2016).

    [39] Wang F D, Williams S, Colegrove P et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 44, 968-977(2013).

    [40] Wu L J, Luo K Y, Liu Y et al. Effects of laser shock peening on the micro-hardness, tensile properties, and fracture morphologies of CP-Ti alloy at different temperatures[J]. Applied Surface Science, 431, 122-134(2018).

    [41] Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale[J]. Science, 324, 349-352(2009).

    [42] Dai S J, Zhu Y T, Huang Z W. Microstructure evolution and strengthening mechanisms of pure titanium with nano-structured surface obtained by high energy shot peening[J]. Vacuum, 125, 215-221(2016).

    [43] Ke M, Hackney S A, Milligan W W et al. Observation and measurement of grain rotation and plastic strain in nanostructured metal thin films[J]. Nanostructured Materials, 5, 689-697(1995).

    [44] Hellstern E, Fecht H J, Fu Z et al. Structural and thermodynamic properties of heavily mechanically deformed Ru and AlRu[J]. Journal of Applied Physics, 65, 305-310(1989).

    [45] Murayama M, Howe J M, Hidaka H et al. Atomic-level observation of disclination dipoles in mechanically milled, nanocrystalline Fe[J]. Science, 295, 2433-2435(2002).

    [46] Asaro R J, Suresh S. Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins[J]. Acta Materialia, 53, 3369-3382(2005).

    [47] Wang Y B, Sui M L. Atomic-scale in situ observation of lattice dislocations passing through twin boundaries[J]. Applied Physics Letters, 94, 021909(2009).

    Tools

    Get Citation

    Copy Citation Text

    Xuepeng Chen, Lingfeng Zhang, Yi Xiong, Gaoli Luo, Yongli Wu. Effect of Laser Shock Peening on Microstructure and Properties of Laser Additive Manufactured TC4 Titanium Alloy[J]. Chinese Journal of Lasers, 2022, 49(16): 1602017

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Nov. 10, 2021

    Accepted: Jan. 6, 2022

    Published Online: Jul. 28, 2022

    The Author Email: Zhang Lingfeng (zh_lingfeng@163.com)

    DOI:10.3788/CJL202249.1602017

    Topics