Journal of Infrared and Millimeter Waves, Volume. 42, Issue 1, 26(2023)
Terahertz sheet beam vacuum electron devices
[1] Thompson H. C.. Electron beams and their applications in low voltage devices[J]. Proc. I.R.E., 24, 1276-1297(1936).
[2] Haeff A. V.. Space-charge effects in electron beams[J]. Proc. I.R.E., 27, 586-602(1939).
[3] Caryotakis G.. A sheet-beam klystron paper design[R], 1-13(2004).
[4] Kyhl R. L., Webster H. F.. Breakup of hollow cylindrical electron beams[J]. IRE Trans. Electron Devices, 3, 172-183(1956).
[5] Cutler C. C.. Instability in hollow and strip electron beams[J]. J. Appl. Phys., 27, 1028-1029(1956).
[6] Pierce J. R.. Instability of hollow beams[J]. IRE Trans. Electron Devices, 3, 183-189(1956).
[7] Buneman O., Levy R. H., Linson L. M.. Stability of crossed-field electron beams[J]. J. Appl. Phys., 37, 3203-3222(1966).
[8] Fnauer W.. Diocotron instability in plasmas and gas discharges[J]. J. Appl. Phys., 37, 602-611(1966).
[9] Gould R. W.. Space charge effects in beam-type magnetrons[J]. J. Appl. Phys., 28, 599-605(1957).
[10] Antonsen T. M., Jr., Ott E.. Velocity shear driven instabilities of an unneutralized electron beam[J]. Phys. Fluids, 18, 1197-1208(1975).
[11] Davidson R. C., Chan H. W., Chan C., Lund S.. Equilibrium and stability properties of intense non-neutral electron flow[J]. Rev. Mod. Phys., 63, 341-374(1991).
[12] Scharlemann E. T.. Wiggle plane focusing in linear Wigglers[J]. J. Appl. Phys., 58, 2154-2161(1985).
[13] Booske J. H., Kumbasar A. H., Basten M. A.. Periodic focusing and ponderomotive stabilization of sheet electron beams[J]. Phys. Rev. Lett., 71, 3979-3982(1993).
[14] Booske J. H., Basten M. A., Kumbasar A. H., Antonsen T. M., Jr., Bidwell S. W., Carmel Y., Destler W. W., Granatstein V. L., Radack D. J.. Periodic magnetic focusing of sheet electron beams[J]. Phys. Plasmas, 1, 1714-1720(1994).
[15] Booske J. H., Basten M. A.. Demonstration via simulation of stable confinement of sheet electron beams using periodic magnetic focusing[J]. IEEE. Tran. Plasma Sci., 27, 134-135(1999).
[16] Panda P. C., Srivastava V., Vohra A.. Staggered closed PCM for stable rectangular sheet electron beam transport[J]. IEEE Trans. Electron Devices, 60, 2918-2923(2013).
[17] Jiang S., Wang X., Zhang X., Lyu Z., Wang Z., Gong H., Gong Y., Duan Z.. Experimental investigation of an electron-optical system for terahertz traveling-wave tubes[J]. IEEE Trans. Electron Devices, 68, 6498-6504(2021).
[18] Rosker M. J., Wallace H. B.. Vacuum electronics and the world above 100 GHz[C](2008).
[19] Chang S., Wu Z., Huang J., Zhao T., Liu D., Hu M., Wei Y., Gong Y., Liu S.. The research progress of vacuum electron device in terahertz band[J].
[20] Duan Z., Gong Y., Feng J., Wei Y., Wang W.. Sheet beam vacuum electron devices[C](2011).
[21] Zhao J., Gamzina D., Li N., Li J., Spear A. G., Barnett L., Banducci M., Risbud S., Luhmann N. C., Jr. Scandate dispenser cathode fabrication for a high-aspect-ratio high-current-density sheet beam electron gun[J]. IEEE Trans. Electron Devices, 59, 1792-1798(2012).
[22] Wang J., Yang Y., Wang Y., Liu W., Zhou M., Zuo T.. A review on scandia doped tungsten matrix scandate cathode[J]. Tungsten, 1, 91-100(2019).
[23] Tang X., Duan Z., Wang Z., Tang T., Wei Y., Gong Y.. The design method of millimeter-wave sheet-beam electron gun[J].
[24] Burtsev A. A., Bushuev N. A., Navrotsky I. A., Sakhadzhi G. V., Shalaev P. D., Grigoriev Y. A.. Experimental study of electron guns for TWT of terahertz range[C](2015).
[25] Field M., Kimura T., Atkinson J., Gamzina D., Luhmann N. C., Jr., Stockwell B., Grant T. J., Griffith Z., Borwick R., Hillman C., Brar B., Reed T., Rodwell M., Shin Y-M, Barnett L. R., Baig A., Popovic B., Domier C., Barchfield R., Zhao J., Higgins J. A., Goren Y.. Development of a 100-W 200-GHz high bandwidth mm-wave amplifier[J]. IEEE Trans. Electron Devices, 65, 2122-2128(2018).
[26] Zhao D., Gu W., Li Q., Wang S., Zhang Z.. Experimental demonstration of a W-band sheet beam klystron[C](2020).
[27] Shu G., Lin J., Huang Z., Deng J., Chang Z., He W.. Design and microfabrication of an interaction circuit for a 0.3-THz sheet beam extended interaction oscillator with multiple-mode operation[J]. IEEE Trans. Terahertz Sci. Technol., 11, 425-432(2021).
[28] Basten M. A.. Formation and transport of high-perveance electron beams for high-power, high-frequency microwaves devices[D]. Ph.D. Dissertation(1996).
[29] Carlsten B. E., Russell S. J., Earley L. M., Krawczyk F. L., Potter J. M., Ferguson P., Humphries S., Jr. Technology development for a mm-wave sheet beam traveling-wave tube[J]. IEEE Trans. Plasma Sci., 33, 85-93(2005).
[30] Jensen A. J., Caryotakis G., Scheitrum G., Sprehn D., Steele B.. Sheet beam klystron simulations using AJDISK[C](2006).
[31] Zhou J., Bhatt R., Chen C.. Cold-fluid theory of equilibrium and stability of a high-intensity periodically twisted ellipse-shaped charged-particle beam.[J]. Phys. Rev. ST Accel. Beams, 9, 1-6(2006).
[32] Duan Z., Tang X., Wang Z., Zhang Y., Chen X., Chen M., Gong Y.. Observation of the reversed Cherenkov radiation[J]. Nature Commun., 14901, 1-7(2017).
[33] Ruan C., Wang S., Zhao D., Han Y., Li Q.. Theory and experimental investigation on the high-performance transport of sheet electron beam for the XSBK and WSBK[C](2012).
[34] Booske J. H., Mcvey B. D., Antonsen T. M., Jr. Stability and confinement of nonrelativistic sheet electron beams with periodic cusped magnetic focusing[J]. J. Appl. Phys., 73, 4140-4155(1993).
[35] Zhao D.. Research on feasibility of closed and offset PCM focusing structures for sheet electron beams[J]. ACTA Phys. Sin., 59, 1712-1720(2010).
[36] Zhang C., Pan P., Chen X., Su S., Song B., Li Y., Lue S., Cai J., Gong Y., Feng J.. Design and experiments of the sheet electron beam transport with periodic cusped magnetic focusing for terahertz traveling-wave tubes[J]. Electronics, 10, 3051(2021).
[37] Choi W., Lee I., Shin J., Choi E.. Stability analysis of 300-GHz sheet electron beam transport in a periodic rectangular quadrupole[J]. IEEE Trans. Plasma Sci., 49, 1121-1127(2021).
[38] Yin P., Xu J., Fang S., Yang R., Luo J., Zhang J., Jia D., Yin H., Yue L., Zhao G., Guo G., Xu L., Wang W., Wei Y.. Electron optical system with integrated PCM for sheet electron beam devices[J]. Phy. Plasmas, 28, 123101(2021).
[39] Joye C. D., Calame J. P., Garven M., Levush B.. UV-LIGA microfabrication of 220 GHz sheet beam amplifier gratings with SU-8 photoresists[J]. J. Micromech. Microeng., 20, 125016(2010).
[40] Pasour J., Wright E., Nguyen K. T., Balkcum A., Wood F. N., Myers R. E., Levush B.. Demonstration of a multikilowatt, solenoidally focused sheet beam amplifier at 94 GHz[J]. IEEE Trans. Electron Devices, 61, 1630-1636(2014).
[41] Pershing D., Nguyen K., Abe D. K., Wright E., Larsen P., Pasour J., Cooke S., Balkcum A., Wood F., Myers R., Levush B.. Demonstration of a wideband 10-kW Ka-band sheet beam TWT amplifier[C](2014).
[42] Li S., Zhang F., Ruan C., Su Y., Wang P.. A G-band high output power and wide bandwidth sheet beam extended interaction klystron design operating at TM31 with 2π mode[J]. Electronics, 10, 1948(2021).
[43] Wang H., Zhao D., Xue Q., Qu Z., Ding H.. Desin and simulation of high-aspect-ratio sheet beam EIK at 0.22 THz[J]. IEEE Trans. Electron Devices, 49, 3811-3817(2021).
[44] Wang X.. Research on carbon nanotubes cold cathode for application in high power microwave tube[D](2016).
[45] Engerroff J. A. B., Baldissera A. B., Magalhaes M. D., Lamarao P. H., Wendhausen P. A. P., Ahrens C. H., Mascheroni J. M.. Additive manufacturing of Sm-Fe-N magnets[J]. J. Rare Earths, 37, 1078-1082(2019).
[46] Feng J.. Integrated vacuum electronics[J]. Vacuum Electronics, 285, 1-7(2010).
Get Citation
Copy Citation Text
Zhi-Fang LYU, Chang-Qing ZHANG, Zhan-Liang WANG, Sheng-Kun JIANG, Cun-Jun RUAN, Jin-Jun FENG, Yu-Bin GONG, Zhao-Yun DUAN. Terahertz sheet beam vacuum electron devices[J]. Journal of Infrared and Millimeter Waves, 2023, 42(1): 26
Category: Research Articles
Received: Mar. 20, 2022
Accepted: --
Published Online: Feb. 23, 2023
The Author Email: Zhao-Yun DUAN (zhyduan@uestc.edu.cn)