Opto-Electronic Engineering, Volume. 51, Issue 10, 240170(2024)

MAS-YOLOv8n road damage detection algorithm from the perspective of drones

Xiaoyan Wang1, Xiyu Wang2, Jie Li3、*, Wenhui Liang2, Jianhong Mou2, and Churan Bi1
Author Affiliations
  • 1School of Statistics and Data Science,Beijing Wuzi University,Beijing 101149,China
  • 2School of Information,Beijing Wuzi University,Beijing 101149,China
  • 3School of Mechanical-electronic and Vehicle Engineering,Beijing University of Civil Engineering and Architecture,Beijing 102616,China
  • show less
    Figures & Tables(16)
    YOLOv8 model structure
    Multi-branch hybrid attention mechanism (MBMA module) structure
    C2f structure improvement. (a) Original C2f structure; (b) Improved C2f structure
    Example of bounding box regression
    Schematic diagram of ShapeIoU calculation
    Examples of road damage types
    YOLOv8n confusion matrix
    Confusion matrix of the model in this article
    Example of detection results
    Heat map of visual features of attention mechanism
    Experimental results before and after improvement of the label allocation algorithm. (a) Comparison of Loss value changes; (b) Comparison of mAP changes
    • Table 1. Dataset road damage details

      View table
      View in Article

      Table 1. Dataset road damage details

      Damage typeDetailClass nameNumber of China-DroneNumber of dataset1Number of dataset2
      CrackLongitudinal crackD00142639952678
      Lateral crackD10126339791096
      Alligator crackD202936199641
      Other corruptionRutting,bump,pothole,separationD40862243235
      Crosswalk blurD43736
      White line blurD443995
      Special signsManhole coverD503553
      RepairRepair769277
    • Table 2. Experimental environment configuration

      View table
      View in Article

      Table 2. Experimental environment configuration

      CategoryEnvironment condition
      CPUAMD Ryzen 7 5800X 8-Core Processor
      GPUNVIDIA GeForce RTX 3060
      Graphics memory12 G
      Operating systemUbuntu 22.04
      CUDA versionCUDA 12.0
      Scripting languagePython
    • Table 3. Comparative experimental results

      View table
      View in Article

      Table 3. Comparative experimental results

      ModelChina-Drone mAP@0.5/%Dataset1 mAP@0.5/%Dataset2 mAP@0.5/%Parameter/MModel volume/MB
      YOLOv5n64.764.092.22.55.03
      YOLOv8n68.564.793.63.05.96
      YOLOv10n62.461.891.42.75.51
      GOLD-YOLO66.165.994.57.211.99
      Faster-RCNN67.866.494.734.6310.24
      TOOD69.065.694.928.3243.95
      RTMDet-Tiny65.664.193.04.477.76
      RT-DETR68.267.287.520.0308
      MAS-YOLOv8n71.667.395.33.25.96
    • Table 4. Verification results of attention mechanism

      View table
      View in Article

      Table 4. Verification results of attention mechanism

      Attention mechanismChina-Drone mAP@0.5/%Dataset1 mAP@0.5/%Dataset2 mAP@0.5/%Parameter/M
      68.564.793.63.0
      SE69.164.193.53.1
      CMBA67.465.594.53.2
      CA68.865.794.53.2
      MBMA70.766.794.83.2
    • Table 5. Results of the ablation experiment

      View table
      View in Article

      Table 5. Results of the ablation experiment

      ModelChina-Drone mAP@0.5/%Dataset1 mAP@0.5/%Dataset2 mAP@0.5/%Parameter/MGFLOPSModel volume/MBFPS
      1YOLOv8n68.564.793.63.08.15.96137
      2+MBMA70.766.794.83.28.15.96116
      3+ShapeIoU70.967.095.03.08.15.96135
      4MAS-YOLOv8n71.667.395.33.28.15.96114
    Tools

    Get Citation

    Copy Citation Text

    Xiaoyan Wang, Xiyu Wang, Jie Li, Wenhui Liang, Jianhong Mou, Churan Bi. MAS-YOLOv8n road damage detection algorithm from the perspective of drones[J]. Opto-Electronic Engineering, 2024, 51(10): 240170

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Jul. 18, 2024

    Accepted: Sep. 10, 2024

    Published Online: Jan. 2, 2025

    The Author Email: Jie Li (李杰)

    DOI:10.12086/oee.2024.240170

    Topics