The Journal of Light Scattering, Volume. 35, Issue 4, 352(2023)
Research Advances in Zinc Oxide/Metal Composite Surface-Enhanced Raman Scattering Substrates
[1] [1] Sharma B, Frontiera R R, Henry A I, et al. SERS: Materials, applications, and the future[J]. Mater. Today, 2012, 15(1-2): 16-25.
[2] [2] Cialla D, Mrz A, Bhme R, et al. Surface-enhanced Raman spectroscopy (SERS): progress and trends[J]. Anal. Bioanal. Chem., 2012, 403: 27-54.
[6] [6] Xia Y, Wang J, Chen R, et al. A Review on the Fabrication of Hierarchical ZnO Nanostructures for Photocatalysis Application[J]. Crystals, 2016, 6(11): 148.
[7] [7] Leung Y H, Chen X Y, Ng A M C, et al. Green emission in ZnO nanostructures-Examination of the roles of oxygen and zinc vacancies[J]. Appl. Surf. Sci., 2013, 271: 202-209.
[8] [8] Hao N, Liu P, Bachman H, et al. Acoustofluidics-assisted engineering of multifunctional three-dimensional zinc oxide nanoarrays[J]. ACS Nano, 2020, 14(5): 6150-6163.
[9] [9] Lee S, Lee S H, Paulson B, et al. Enhancement of local surface plasmon resonance (LSPR) effect by biocompatible metal clustering based on ZnO nanorods in Raman measurements[J]. Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 2018, 204: 203-208.
[10] [10] Yang M, Yu J, Lei F, et al. Synthesis of low-cost 3D-porous ZnO/Ag SERS-active substrate with ultrasensitive and repeatable detectability[J]. Sens. Actuators B Chem., 2018, 256: 268-275.
[11] [11] Zheng X, Zhang Z, Meng S, et al. Regulating charge transfer over 3D Au/ZnO hybrid inverse opal toward efficiently photocatalytic degradation of bisphenol A and photoelectrochemical water splitting[J]. Chem. Eng. J., 2020, 393: 124676.
[12] [12] Liu Y, Xu C, Lu J, et al. Template-free synthesis of porous ZnO/Ag microspheres as recyclable and ultra-sensitive SERS substrates[J]. Appl. Surf. Sci., 2018, 427: 830-836.
[13] [13] Sun Q, Zhang Q, Zhou N, et al. FDTD simulation of Ag-decorated ZnO nanorods for optimization of 3D SERS substrates[J]. Appl. Surf. Sci., 2021, 565: 150524.
[14] [14] Tieu D T, Trang T N Q, Thu V T H, et al. Assembly engineering of Ag@ ZnO hierarchical nanorod arrays as a pathway for highly reproducible surface-enhanced Raman spectroscopy applications[J]. J. Alloys Compd., 2019, 808: 151735.
[15] [15] Lei S, Tao C, Li J, et al. Visible light-induced charge transfer to improve sensitive surface-enhanced Raman scattering of ZnO/Ag nanorod arrays[J]. Appl. Surf. Sci., 2018, 452: 148-154.
[16] [16] Han B, Guo S, Jin S, et al. Improved charge transfer contribution by cosputtering Ag and ZnO[J]. Nanomaterials, 2020, 10(8): 1455.
[17] [17] Liu C, Xu X, Wang C, et al. ZnO/Ag nanorods as a prominent SERS substrate contributed by synergistic charge transfer effect for simultaneous detection of oral antidiabetic drugs pioglitazone and phenformin[J]. Sens. Actuators B Chem., 2020, 307: 127634.
[18] [18] Sheng F, Xu C, Jin Z, et al. Simulation on field enhanced electron transfer between the interface of ZnO–Ag nanocomposite[J]. J. Phys. Chem. C, 2013, 117(36): 18627-18633.
[19] [19] Zhai Y, Zheng Y, Ma Z, et al. Synergistic enhancement effect for boosting Raman detection sensitivity of antibiotics[J]. ACS Sens., 2019, 4(11): 2958-2965.
[20] [20] Sakir M, Salem S, Sanduvac S T, et al. Photocatalytic green fabrication of Au nanoparticles on ZnO nanorods modified membrane as flexible and photocatalytic active reusable SERS substrates[J]. Colloids Surf. Physicochem. Eng. Asp., 2020, 585: 124088.
[21] [21] Zhang P, et al., Fabrication of ZnO Nanocap-Ordered Arrays with Controllable Amount of Au Nanoparticles Decorated and Their Detection and Degradation Performance for Harmful Molecules[J]. ACS omega, 2020. 5(49): p. 31730-31737.
[22] [22] Chen X, Zhu L, Ma Z, et al. Ag nanoparticles decorated ZnO nanorods as multifunctional SERS substrates for ultrasensitive detection and catalytic degradation of Rhodamine B[J]. Nanomaterials, 2022, 12(14): 2394.
[23] [23] Kandjani A E, Mohammadtaheri M, Thakkar A, et al. Zinc oxide/silver nanoarrays as reusable SERS substrates with controllable ‘hot-spots’ for highly reproducible molecular sensing[J]. J. Colloid Interface Sci., 2014, 436: 251-257.
[24] [24] Chang T H, Chang Y C, Wu S H. Ag nanoparticles decorated ZnO: Al nanoneedles as a high-performance surface-enhanced Raman scattering substrate[J]. J. Alloys Compd., 2020, 843: 156044.
[25] [25] He X, Zhou X, Liu Y, et al. Ultrasensitive, recyclable and portable microfluidic surface-enhanced raman scattering (SERS) biosensor for uranyl ions detection[J]. Sens. Actuators B Chem., 2020, 311: 127676.
[26] [26] Pal A K, Pagal S, Prashanth K, et al. Ag/ZnO/Au 3D hybrid structured reusable SERS substrate as highly sensitive platform for DNA detection[J]. Sens. Actuators B Chem., 2019, 279: 157-169.
[27] [27] He X, Liu Y, Liu Y, et al. Controllable fabrication of Ag-NP-decorated porous ZnO nanosheet arrays with superhydrophobic properties for high performance SERS detection of explosives[J]. CrystEngComm, 2020, 22(4): 776-785.
[28] [28] Huo D, Chen B, Li M, et al. Template-assisted fabrication of Ag-nanoparticles@ ZnO-nanorods array as recyclable 3D surface enhanced Raman scattering substrate for rapid detection of trace pesticides[J]. Nanotechnology, 2021, 32(14): 145302.
[29] [29] Song W, Han X, Chen L, et al. Site-specific deposition of Ag nanoparticles on ZnO nanorod arrays via galvanic reduction and their SERS applications[J]. J. Raman Spectrosc., 2010, 41(9): 907-913.
[30] [30] Zeng Y, Wang F, Du D, et al. ZnO nanotower arrays decorated with cubic and tetrahedral shaped Ag-NPs as hybrid SERS-active substrates[J]. Appl. Surf. Sci., 2021, 544: 148924.
[31] [31] Graniel O, Iatsunskyi I, Coy E, et al. Au-covered hollow urchin-like ZnO nanostructures for surface-enhanced Raman scattering sensing[J]. J. Mater. Chem. C, 2019, 7(47): 15066-15073.
[32] [32] Kaydashev V, Zolotukhin P, Belanova A, et al. SERS induced by two coupled monolayers of Au plasmonic nanoparticles[C]. Journal of physics: Conference series: Vol. 1124. IOP Publishing, 2018: 051024.
[33] [33] Rajkumar P, Sarma B K. Ag/ZnO heterostructure fabricated on AZO platform for SERS based sensitive detection of biomimetic hydroxyapatite[J]. Appl. Surf. Sci., 2020, 509: 144798.
[34] [34] Xu L, Zhang H, Tian Y, et al. Photochemical synthesis of ZnO@ Au nanorods as an advanced reusable SERS substrate for ultrasensitive detection of light-resistant organic pollutant in wastewater[J]. Τáλαντα Proc. Dutch Archaeol. Hist. Soc., 2019, 194: 680-688.
[35] [35] Li Z, Zhu K, Zhao Q, et al. The enhanced SERS effect of Ag/ZnO nanoparticles through surface hydrophobic modification[J]. Appl. Surf. Sci., 2016, 377: 23-29.
[36] [36] Tang H, Meng G, Huang Q, et al. Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls[J]. Adv. Funct. Mater., 2012, 22(1): 218-224.
[37] [37] Xie Y, Yang S, Mao Z, et al. In situ fabrication of 3D Ag@ ZnO nanostructures for microfluidic surface-enhanced Raman scattering systems[J]. ACS Nano, 2014, 8(12): 12175-12184.
[38] [38] Barbillon G. Fabrication and SERS performances of metal/Si and metal/ZnO nanosensors: A review[J]. Coatings, 2019, 9(2): 86.
[39] [39] Cheng Y, Wang W, Yao L, et al. 3D Ag/ZnO microsphere SERS substrate with ultra-sensitive, recyclable and self-cleaning performances: application for rapid in site monitoring catalytic dye degradation and insight into the mechanism[J]. Colloids Surf. Physicochem. Eng. Asp., 2020, 607: 125507.
[40] [40] Ma L, Zhang Q, Li J, et al. Ag–ZnO nanocomposites are used for SERS substrates and promote the coupling reaction of PATP[J]. Materials, 2021, 14(4): 922.
[41] [41] Slot T K, Eisenberg D, Rothenberg G. Cooperative surface-particle catalysis: The role of the “Active doughnut” in catalytic oxidation[J]. ChemCatChem, 2018, 10(10): 2119-2124.
[42] [42] Hu H, Wang Z, Wang S, et al. ZnO/Ag heterogeneous structure nanoarrays: Photocatalytic synthesis and used as substrate for surface-enhanced Raman scattering detection[J]. J. Alloys Compd., 2011, 509(5): 2016-2020.
[43] [43] Elsayed K A, Alomari M, Drmosh Q, et al. Fabrication of ZnO-Ag bimetallic nanoparticles by laser ablation for anticancer activity[J]. Alex. Eng. J., 2022, 61(2): 1449-1457.
[44] [44] Zare M, Namratha K, Alghamdi S, et al. Novel green biomimetic approach for synthesis of ZnO-Ag nanocomposite; antimicrobial activity against food-borne pathogen, biocompatibility and solar photocatalysis[J]. Sci. Rep., 2019, 9(1): 8303.
[45] [45] Pal A K, Chandra G K, Umapathy S, et al. Ultra-sensitive, reusable, and superhydrophobic Ag/ZnO/Ag 3D hybrid surface enhanced Raman scattering substrate for hemoglobin detection[J]. J. Appl. Phys., 2020, 127(16).
[46] [46] Ye C, Zhu Z, Li X, et al. ZIF-8 derived TiO2/ZnO heterostructure decorated with AgNPs as SERS sensor for sensitive identification of trace pesticides[J]. J. Alloys Compd., 2022, 901: 163675.
[47] [47] Wang J, Hassan M M, Ahmad W, et al. A highly structured hollow ZnO@ Ag nanosphere SERS substrate for sensing traces of nitrate and nitrite species in pickled food[J]. Sens. Actuators B Chem., 2019, 285: 302-309.
[48] [48] Shaik U P, Hamad S, Ahamad Mohiddon M, et al. Morphologically manipulated Ag/ZnO nanostructures as surface enhanced Raman scattering probes for explosives detection[J]. J. Appl. Phys., 2016, 119(9).
Get Citation
Copy Citation Text
LIU Dongliang, CHENG Pengfei, WANG Jun, CHENG Lin, YUAN Shun. Research Advances in Zinc Oxide/Metal Composite Surface-Enhanced Raman Scattering Substrates[J]. The Journal of Light Scattering, 2023, 35(4): 352
Received: Jun. 30, 2023
Accepted: --
Published Online: Jul. 23, 2024
The Author Email: