Laser & Optoelectronics Progress, Volume. 60, Issue 2, 0234001(2023)

Optimization Strategy for X-Ray Generation and Countermeasure Fusion of Bronze Mirror

Meng Wu1、*, Jiao Wang1, and Jiankai Xiang2
Author Affiliations
  • 1College of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
  • 2Shaanxi Institute for the Preservation of Cultural Heritage, Xi'an 710075, Shaanxi, China
  • show less
    Figures & Tables(13)
    X-ray imaging effect diagrams of copper mirror at different shooting energy. (a) High-energy shooting; (b) low-energy shooting
    Copper mirror generative confrontation fusion network framework
    Generator network structure based on multi-scale feature fusion
    Discriminator network structure
    Network training process
    Copper mirror X-ray image control group. (a) High energy shooting effect group; (b) low energy shooting effect group
    Comparison of copper mirror fusion by different algorithms. (a) LP; (b) GFF; (c) LE-LP; (d) BFWLS; (e) O-BFWLS
    Comparison of copper mirror fusion in ablation experiment. (a) Fusion-GAN-CLF; (b) Fusion-GAN-MSFF; (c) proposed algorithm
    Comparison of fusion effect details. (a) High-energy X-source image; (b) low-energy X-source image; (c) Fusion-GAN-CLF; (d) Fusion-GAN-MSF; (e) proposed algorithm
    • Table 1. Objective evaluation results of different algorithms on different images

      View table

      Table 1. Objective evaluation results of different algorithms on different images

      ImageMetricLPGFFLE-LPBFWLSO-BFWLS
      Group 1

      EN

      SF

      AG

      CEN

      JE

      NFMI

      4.9667

      10.6807

      2.0742

      2.566/2.971

      7.915/7

      1.9646

      4.857

      10.8896

      2.2773

      0.590/6.059

      7.584/7.092

      2.1598

      4.8333

      9.9375

      1.9118

      1.227/5.112

      7.590/7

      2.0651

      4.4198

      9.1235

      1.5558

      0.244/6.315

      6.597/6.447

      2.5458

      4.4291

      9.1596

      1.6132

      0.204/6.341

      6.576/6.455

      2.5696

      Group 2

      EN

      SF

      AG

      CEN

      JE

      NFMI

      4.2420

      6.8456

      2.0520

      0.193/0.303

      7.175/5.809

      1.9256

      4.1233

      7.4411

      1.9256

      0.525/0.457

      6.882/5.936

      2.0003

      4.205

      7.2289

      1.9665

      0.467/0.469

      6.879/5.918

      2.1584

      4.4404

      6.2832

      1.5032

      0.538/0.562

      6.100/5.763

      2.856

      4.2231

      6.2832

      1.5032

      0.531/0.541

      5.773/5.759

      3.138

      Group 3

      EN

      SF

      AG

      CEN

      JE

      NFMI

      5.1207

      6.8398

      1.8539

      0.047/0.550

      7.3246/7

      3.0145

      5

      5.8605

      1.8432

      0.455/0.590

      8.3765/7

      2.1592

      4.9781

      5.8595

      1.7057

      1.230/0.448

      7.8212/7

      2.7046

      5.1144

      6.5366

      1.4828

      0.052/0.564

      7.2544/7

      3.2308

      5.1144

      6.5366

      1.4828

      1.695/0.571

      5.0175/7

      4.9991

      Group 4

      EN

      SF

      AG

      CEN

      JE

      NFMI

      6.0487

      6.4464

      1.5824

      1.411/1.095

      11.36/9.669

      1.1782

      5.6106

      8.6505

      1.7474

      3.461/0.806

      10.86/9.155

      0.9797

      5.5615

      8.2303

      1.6409

      1.364/1.266

      10.70/8.996

      0.8909

      5.4072

      8.3238

      1.3300

      0.097/1.631

      10.70/8.995

      1.002

      5.4152

      8.1558

      1.4989

      0.065/1.483

      10.73/9.021

      0.9821

      Group 5

      EN

      SF

      AG

      CEN

      JE

      NFMI

      3.9007

      5.5334

      1.3779

      0.437/0.338

      6.177/5.645

      1.8198

      3.6696

      6.0313

      1.2521

      0.202/0.193

      5.901/5.443

      1.8778

      3.7686

      5.5984

      1.2257

      0.700/0.340

      5.658/5.343

      2.1215

      3.735

      6.0035

      1.1408

      0.149/0.544

      5.126/5.198

      2.4949

      3.7331

      6.0789

      1.2949

      0.058/0.541

      4.623/5.197

      2.9579

    • Table 2. Comparison of experimental data of different algorithms

      View table

      Table 2. Comparison of experimental data of different algorithms

      ImageMetricFusion-GAN-CLFFusion-GAN-MSFFProposed algorithm
      Group 1

      EN

      SF

      AG

      CEN

      JE

      NFMI

      4.5475

      10.399

      2.1427

      9.493/1.006

      7.832/6.872

      2.9488

      4.5868

      10.0421

      1.9867

      9.455/1.278

      7.770/6.839

      3.0166

      4.5875

      10.7134

      2.222

      9.657/1.021

      7.858/6.905

      2.9875

      Group 2

      EN

      SF

      AG

      CEN

      JE

      NFMI

      4.2864

      8.6157

      2.1602

      12.37/15.60

      6.865/5.250

      2.3429

      4.2724

      8.4269

      2.0118

      12.43/15.71

      6.839/5.252

      2.3629

      4.3101

      8.7189

      2.1705

      12.33/15.55

      6.914/5.259

      2.3559

      Group 3

      EN

      SF

      AG

      CEN

      JE

      NFMI

      5.942

      10.2126

      3.4667

      9.674/13.42

      8.055/6.836

      2.537

      5.933

      9.4506

      3.0807

      9.447/13.35

      7.898/6.800

      2.5786

      5.9653

      10.3992

      3.5488

      9.438/13.23

      8.055/6.846

      2.6648

      Group 4

      EN

      SF

      AG

      CEN

      JE

      NFMI

      6.3531

      7.5210

      1.7487

      5.848/12.71

      10.60/8.908

      0.9464

      6.3967

      7.7080

      1.6680

      6.021/12.72

      10.65/8.958

      0.9635

      6.4849

      7.7082

      1.7529

      6.246/12.75

      10.75/9.052

      0.9989

      Group 5

      EN

      SF

      AG

      CEN

      JE

      NFMI

      3.7859

      8.6920

      1.6906

      12.75/15.63

      5.768/4.910

      2.2131

      3.7733

      8.5561

      1.6821

      12.71/15.65

      5.748/4.893

      2.2188

      3.7878

      9.3739

      1.6934

      12.74/15.63

      6.262/5.685

      2.2303

    • Table 3. Subjective score of experts in cultural relic restoration

      View table

      Table 3. Subjective score of experts in cultural relic restoration

      LevelHinder the scaleScore
      ExcellentObserve all diseases and identify types5
      GoodObserve all diseases and identify some types4
      ModerateObserve part of the disease and identify the type3
      PassObserve part of the disease but cannot distinguish the type2
      PoorUnable to observe the disease1
    • Table 4. Subjective evaluation results

      View table

      Table 4. Subjective evaluation results

      GroupFusion-GAN-CLFFusion-GAN-MSFFProposed algorithm
      Group 143.84.7
      Group 24.24.44.8
      Group 33.83.94.4
      Group 43.63.44.2
      Group 54.23.94.6
    Tools

    Get Citation

    Copy Citation Text

    Meng Wu, Jiao Wang, Jiankai Xiang. Optimization Strategy for X-Ray Generation and Countermeasure Fusion of Bronze Mirror[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0234001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: X-Ray Optics

    Received: Nov. 1, 2021

    Accepted: Dec. 13, 2021

    Published Online: Feb. 7, 2023

    The Author Email: Meng Wu (wumeng@xauat.edu.cn)

    DOI:10.3788/LOP212843

    Topics