Laser & Optoelectronics Progress, Volume. 59, Issue 2, 0228005(2022)

Deep Learning Point Cloud Classification Method Based on Fusion Graph Convolution

Tianye Xu and Haiyong Ding*
Author Affiliations
  • School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science & Technology, Nanjing , Jiangsu 210044, China
  • show less
    Figures & Tables(15)
    Structure of the deep learning classification network
    Principle of the spatial domain graph convolution
    Schematic diagram of the KNN
    Central node information aggregated under different orders. (a) q=1; (b) q=2
    Training data and multispectral aerial image of corresponding region. (a) Point cloud; (b) aerial image
    Testing data and multispectral aerial images of corresponding region. (a) Point cloud; (b) aerial image
    Fusion result of point cloud data and spectral images. (a) Training data; (b) testing data
    Schematic diagram of multiscale sampling
    Testing data labels and classification results. (a) True label; (b) classification result of our method
    Error map of the classification result
    Error maps of classification results of different methods. (a) PointNet; (b) DGCNN; (c) PointNet++; (d) our method
    • Table 1. Number of various classes points in Vaihingen data set

      View table

      Table 1. Number of various classes points in Vaihingen data set

      Classp_ll_vi_scarf_hr_ff_es_bt_e
      Training data5461808501937234614120701520452725047605135173
      Testing data6009869010198637087422109048112242481854226
    • Table 2. Confusion matrix and evaluation indexes of the classification result

      View table

      Table 2. Confusion matrix and evaluation indexes of the classification result

      Classp_ll_vi_scarf_hr_ff_es_bt_e
      p_l60.60.20.00.00.027.23.60.08.5
      l_v0.079.310.50.40.40.90.72.94.9
      i_s0.06.492.00.30.00.80.10.10.2
      car0.09.911.355.03.45.45.45.54.0
      f_h0.025.73.80.219.39.21.111.329.3
      r_f0.11.20.90.00.093.91.70.21.9
      f_e0.26.42.41.30.126.248.63.211.6
      s_b0.018.72.30.61.03.41.519.153.3
      t_e0.03.10.50.10.13.31.30.990.6
      Precision80.980.990.166.564.193.553.441.570.1
      Recall60.679.392.055.019.393.948.619.190.6
      F1 score69.380.191.060.229.693.750.926.179.1
    • Table 3. Quantitative evaluation index of different methods

      View table

      Table 3. Quantitative evaluation index of different methods

      Methodp_ll_vi_scarf_hr_ff_es_bt_eOAF1 score
      PointNet1.768.977.630.616.769.16.833.346.560.933.6
      DGCNN80.381.278.926.852.067.118.931.179.570.641.6
      PointNet++71.572.090.068.316.774.038.439.252.773.650.1
      Ours80.980.990.166.564.193.553.441.570.184.364.4
    • Table 4. Classification results of our method and existing methods

      View table

      Table 4. Classification results of our method and existing methods

      Methodp_ll_vi_scarf_hr_ff_es_bt_eOAF1 score
      UM46.179.089.147.75.292.052.740.977.980.859.0
      WhuY337.181.490.163.423.993.447.539.978.082.361.6
      BIJ_W13.878.590.556.436.392.253.243.378.481.560.3
      RIT_137.577.991.573.418.094.049.345.982.581.663.3
      Ref.[2168.480.291.478.137.093.060.546.079.482.270.7
      Ours69.380.191.060.229.693.750.926.179.184.364.4
    Tools

    Get Citation

    Copy Citation Text

    Tianye Xu, Haiyong Ding. Deep Learning Point Cloud Classification Method Based on Fusion Graph Convolution[J]. Laser & Optoelectronics Progress, 2022, 59(2): 0228005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jul. 22, 2021

    Accepted: Sep. 2, 2021

    Published Online: Dec. 29, 2021

    The Author Email: Haiyong Ding (409803028@qq.com)

    DOI:10.3788/LOP202259.0228005

    Topics