Laser & Optoelectronics Progress, Volume. 57, Issue 16, 161015(2020)
Detection of Pulmonary Nodules Based on Improved Full Convolution Network Model
[1] Siegel R L, Miller K D, Fedewa S A et al. Colorectal cancer statistics, 2017[J]. CA: A Cancer Journal for Clinicians, 67, 177-193(2017).
[2] Wang C M. Key techniques for lung nodule detection and classification based on chest imaging[D]. Beijing: University of Chinese Academy of Sciences, 1-3(2018).
[3] Kong X Y, Wang R Z. Artificial intelligence and its application in medical field[J]. Journal of Medical Informatics, 37, 1-5(2016).
[4] Lü X Q, Wu L, Gu Y et al. Detection of low dose CT pulmonary nodules based on 3D convolution neural network[J]. Optics and Precision Engineering, 26, 1211-1218(2018).
[5] Zhu H, Qin P L. U-Net pulmonary nodule detection algorithm based on multi-scale feature structure[J]. Computer Engineering, 45, 254-261(2019).
[6] Liu D, Wang Y J, Xu H. Pulmonary nodule detection of medical image based on deep learning[J]. Microelectronics & Computer, 36, 5-9(2019).
[8] Setio A A A, Ciompi F, Litjens G et al. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks[J]. IEEE Transactions on Medical Imaging, 35, 1160-1169(2016).
[9] Dobrenkii A, Kuleev R, Khan A et al. Large residual multiple view 3D CNN for false positive reduction in pulmonary nodule detection. [C]∥2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), August 23-25, 2017, Manchester, UK. New York: IEEE, 17225489(2017).
[10] Setio A A A, Traverso A, de Bel T et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge[J]. Medical Image Analysis, 42, 1-13(2017).
[11] Dou Q, Chen H, Yu L Q et al. Multilevel contextual 3-D CNNs for false positive reduction in pulmonary nodule detection[J]. IEEE Transactions on Biomedical Engineering, 64, 1558-1567(2017).
[12] Daniel B, Zhou C, Xiao F Y et al. -10-24)[2019-11-12]. https:∥arxiv., org/abs/1904, 02689(2019).
[13] He K M, Gkioxari G, Dollar P et al. Mask R-CNN. [C]∥2017 IEEE International Conference on Computer Vision (ICCV), October 22-29, 2017, Venice. New York: IEEE, 2961-2969(2017).
[14] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).
[15] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. [C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 3431-3440(2015).
[16] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition. [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 770-778(2016).
[17] Lin T Y, Dollar P, Girshick R et al. Feature pyramid networks for object detection. [C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI. New York: IEEE, 2117-2125(2017).
[18] Li Z M, Peng C, Yu G et al. -04-19)[2019-11-12]. https:∥arxiv., org/abs/1804, 06215(2018).
[19] Wu Y, Luo L P, Xu B et al. Classification and diagnosis of ultrasound images with breast tumors based on transfer learning[J]. Chinese Journal of Medical Imaging Technology, 35, 357-360(2019).
[20] Hinton G E, Srivastava N, Krizhevsky A et al. -07-03)[2019-11-12]. https:∥arxiv., org/abs/1207, 0580(2012).
[21] Messay T, Hardie R C, Tuinstra T R. Segmentation of pulmonary nodules in computed tomography using a regression neural network approach and its application to the lung image database consortium and image database resource initiative dataset[J]. Medical Image Analysis, 22, 48-62(2015).
[22] Paszke A, Gross S, Chintala S et al. -10-29) https:∥openreview.net/forum?id=[2019-11-12]. BJJsrmfCZ.(2017).
[23] Simonyan K. -04-10)[2019-11-12]. https:∥arxiv., org/abs/1409, 1556(2015).
[24] Ioffe S. -03-02)[2019-11-12]. https:∥arxiv., org/abs/1502, 03167(2015).
[25] He K M, Zhang X Y, Ren S Q et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. [C]∥2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE, 1026-1034(2015).
Get Citation
Copy Citation Text
Ruoyu Liu, Libo Liu. Detection of Pulmonary Nodules Based on Improved Full Convolution Network Model[J]. Laser & Optoelectronics Progress, 2020, 57(16): 161015
Category: Image Processing
Received: Nov. 13, 2019
Accepted: Jan. 16, 2020
Published Online: Aug. 5, 2020
The Author Email: Libo Liu (liulib@163.com)