Laser & Optoelectronics Progress, Volume. 58, Issue 16, 1610023(2021)

Lightweight Object Detection Network Based on Convolutional Neural Network

Yequn Cheng1,2, Yan Wang1,2, Yuying Fan1,2, and Baoqing Li1、*
Author Affiliations
  • 1Key Laboratory of Microsystem Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(11)
    Depthwise separable convolution
    Channel feature interweaving module
    Adaptive multi-scale weighted feature fusion module
    Spatial pyramid pooling
    Overall network structure of BENet
    Loss curve of BENet and YOLOv3
    Comparison of the detection results of different algorithms on the VOC dataset. (a) YOLOv3; (b) BENet; (c) YOLOv3 tiny
    • Table 1. Related parameters of I-MobileNetv2

      View table

      Table 1. Related parameters of I-MobileNetv2

      Input sizeOperatorStrideNOutput size
      416×416×3Conv2d21208×208×32
      208×208×32Bottleneck11208×208×16
      208×208×16Bottleneck22104×104×24
      104×104×24Feature interweaving12104×104×24
      104×104×24Bottleneck2352×52×32
      52×52×32Feature interweaving1252×52×32
      52×52×32Bottleneck2426×26×64
      26×26×64Bottleneck1326×26×96
      26×26×96Feature interweaving1226×26×96
      26×26×96Bottleneck2313×13×160
      13×13×160Bottleneck1113×13×320
      13×13×320Feature interweaving1213×13×320
      13×13×320Conv2d1113×13×1280
    • Table 2. Comparison of the results of different object detection algorithms on PASCAL VOC dataset

      View table

      Table 2. Comparison of the results of different object detection algorithms on PASCAL VOC dataset

      AlgorithmInput sizeBackbonemAP/%FPSParams/106
      Faster-RCNN600×1000VGG73.27138.5
      SSD512×512VGG76.82233.1
      DSSD513×513ResNet-10181.55.5
      SSDLite300×300MobileNet72.7566.8
      R-FCN600×1000ResNet-10180.59
      RFBNet512×512VGG82.23834.5
      YOLO448×44866.42086.7
      YOLOv3 tiny544×54461.11168.5
      YOLOv3544×544Darknet 5380.426.562.3
      BENet544×544I-MobileNetv278.4497.9
    • Table 3. Comparison of model size and number of calculations between BENet and YOLOv3

      View table

      Table 3. Comparison of model size and number of calculations between BENet and YOLOv3

      AlgorithmModel size /MBBFLOPs
      YOLOv3 tiny (416)345.56
      YOLOv3(416)23665.86
      BENet(416)326.31
    • Table 4. Ablation experiment on PASCAL VOC dataset

      View table

      Table 4. Ablation experiment on PASCAL VOC dataset

      BENet baselineWith MobileNetv2With I-MobileNetv2With SPPWith weighted feature fusionmAP /%
      75.1
      76.3
      77.6
      78.4
    Tools

    Get Citation

    Copy Citation Text

    Yequn Cheng, Yan Wang, Yuying Fan, Baoqing Li. Lightweight Object Detection Network Based on Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2021, 58(16): 1610023

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Sep. 17, 2020

    Accepted: Oct. 22, 2020

    Published Online: Aug. 22, 2021

    The Author Email: Baoqing Li (sinoiot@mail.sim.ac.cn)

    DOI:10.3788/LOP202158.1610023

    Topics