Journal of Inorganic Materials, Volume. 39, Issue 11, 1212(2024)

Efficient Potassium Storage through Ti-O-H-O Electron Fast Track of MXene Heterojunction

Shaofei CHAO1, Yanhui XUE1, Qiong WU1、*, Fufa WU1, Sufyan Javed MUHAMMAD2, and Wei ZHANG3
Author Affiliations
  • 11. School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, China
  • 22. School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
  • 33. Key Laboratory of Automobile Materials MOE, Jilin Provincial International Cooperation, Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, International Center of Future Science, School of Materials Science & Engineering, Jilin University, Changchun 130012, China
  • show less
    References(51)

    [1] WU Q, XUE Y, CHAO S et al. Moiré superlattice MXene nanosheets constructed from twisted hexagon-Ti3AlC2 by microwave-assisted Lewis molten salt etching: implications for structural stability in electrochemical energy storage[J]. ACS Applied Nano Materials, 677(2022).

    [3] XU Z, WU M, CHEN Z et al. Direct structure-performance comparison of all-carbon potassium and sodium ion capacitors[J]. Advanced Science, 1802272(2019).

    [4] LIANG J, RAWAL A, YU M et al. Low-potential solid-solid interfacial charging on layered polyaniline anode for high voltage pseudocapacitive intercalation Li-ion supercapacitors[J]. Nano Energy, 108010(2023).

    [5] TANG H, YAO J, ZHU Y. Recent developments and future prospects for zinc-ion hybrid capacitors: a review[J]. Advanced Energy Materials, 2003994(2021).

    [6] LI T, ZHAO H, LI C et al. Recent progress and prospects in anode materials for potassium-ion capacitors[J]. New Carbon Materials, 253(2021).

    [7] CUI Y, ZHAO L, LI B et al. Tailored MoS2 bilayer grafted onto N/S-doped carbon for ultra-stable potassium-ion capacitor[J]. Chemical Engineering Journal, 137815(2022).

    [8] ANASORI B, LUKATSKAVA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials, 16098(2017).

    [9] LUKATSKAVA M R, KOTA S, LIN Z et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides[J]. Nature Energy, 17105(2017).

    [10] WAN S, LI X, CHEN Y et al. Ultrastrong MXene films via the synergy of intercalating small flakes and interfacial bridging[J]. Nature Communications, 7340(2022).

    [11] MENG Y, ZENG P, YANG X Y et al. Simultaneously achieving enhanced water adsorption and rapid adsorbed hydroxyl transfer toward MXene-based materials for highly efficient alkaline electrocatalytic hydrogen evolution[J]. Chemical Engineering Journal, 143372(2023).

    [12] LIU L, ZSCHIESCHE H, ANTONIETTI M et al. Tuning the surface chemistry of MXene to improve energy storage: example of nitrification by salt melt[J]. Advanced Energy Materials, 2202709(2023).

    [13] LI L, CHENG Q F. Recent advances in the high performance MXenes nanocomposites[J]. Journal of Inorganic Materials, 153(2024).

    [14] WANG X, LI N, YIN J et al. Interface interaction-mediated design of tough and conductive MXene-composited polymer hydrogel with high stretchability and low hysteresis for high-performance multiple sensing[J]. Science China Materials, 272(2023).

    [15] PAN Z, JIANG Y, YANG P et al. In situ growth of layered bimetallic ZnCo hydroxide nanosheets for high-performance all-solid-state pseudocapacitor[J]. ACS Nano, 2968(2018).

    [16] LI K, LI J, ZHU Q et al. Three-dimensional MXenes for supercapacitors: a review[J]. Small Methods, 2101537(2022).

    [18] LUO J, WANG C, WANG H et al. Pillared MXene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes[J]. Advanced Functional Materials, 1805946(2019).

    [19] ZHAO J, WEN J, XIAO J et al. Nb2CTx MXene: high capacity and ultra-long cycle capability for lithium-ion battery by regulation of functional groups[J]. Journal of Energy Chemistry, 387(2021).

    [20] TIAN Y, QUE W, LUO Y et al. Surface nitrogen-modified 2D titanium carbide (MXene) with high energy density for aqueous supercapacitor applications[J]. Journal of Materials Chemistry A, 5416(2019).

    [21] ZOU Z, WANG Q, ZHU K et al. Ultrathin-walled Bi2S3 nanoroll/MXene composite toward high capacity and fast lithium storage[J]. Small, 2106673(2022).

    [22] CHEN J, REN Y, ZHANG H et al. Ni-Co-Fe layered double hydroxide coated on Ti3C2 MXene for high-performance asymmetric supercapacitor[J]. Applied Surface Science, 150116(2021).

    [23] TANG H, CHEN W, LI N et al. Layered MnO2 nanodots as high-rate and stable cathode materials for aqueous zinc-ion storage[J]. Energy Storage Materials, 335(2022).

    [24] HAN M, YAO J, HUANG J et al. Synergistic chemical and electrochemical strategy for high-performance Zn//MnO2 batteries[J]. Chinese Chemical Letters, 107493(2023).

    [25] WANG J, GUO W, LIU Z et al. Engineering of self-aggregation- resistant MnO2 heterostructure with a built-in field for enhanced high-mass-loading energy storage[J]. Advanced Energy Materials, 2300224(2023).

    [26] DAI Y, ZHANG J, YAN X et al. Investigating the electrochemical performance of MnO2 polymorphs as cathode materials for aqueous proton batteries[J]. Chemical Engineering Journal, 144158(2023).

    [27] LI X L, ZHU J F, JIAO Y H et al. Manganese dioxide morphology on electrochemical performance of Ti3C2Tx@MnO2 composites[J]. Journal of Inorganic Materials, 119(2020).

    [28] TANG Y, ZHENG S, XU Y et al. Advanced batteries based on manganese dioxide and its composites[J]. Energy Storage Materials, 284(2018).

    [29] WANG J, WANG J G, LIU H et al. Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries[J]. Journal of Materials Chemistry A, 13727(2019).

    [30] JABLONSKIENE J, SIMKUNAITE D, VAICIUNIENE J et al. Synthesis of carbon-supported MnO2 nanocomposites for supercapacitors application[J]. Crystals, 784(2021).

    [31] CLARK S J, SEGALL M D, PICKAD C J et al. First principles methods using CASTEP[J]. Zeitschrift für Kristallographie - Crystalline Materials, 567(2005).

    [32] YU M, YANG S, WU C et al. Machine learning the Hubbard U parameter in DFT+U using Bayesian optimization[J]. npj Computational Materials, 180(2020).

    [34] ZHU X, CAO Z, WANG W et al. Superior-performance aqueous zinc-ion batteries based on the in situ growth of MnO2 nanosheets on V2CTX MXene[J]. ACS Nano, 2971(2021).

    [35] WANG D, GAO Y, LIU Y et al. Investigation of chloride ion adsorption onto Ti2C MXene monolayers by first-principles calculations[J]. Journal of Materials Chemistry A, 24720(2017).

    [36] XU C, XU B, GU Y et al. Graphene-based electrodes for electrochemical energy storage[J]. Energy & Environmental Science, 1388(2013).

    [37] XI S, CHENG X, GAO X et al. Simple fabrication of Ti3C2/MnO2 composites as cathode material for high capacity and long cycle lifespan Zn-ion batteries[J]. Energy Technology, 2300122(2023).

    [38] WANG Q, YUAN H, ZHANG M et al. A highly conductive and supercapacitive MXene/N-CNT electrode material derived from a MXene-Co-melamine precursor[J]. ACS Applied Electronic Materials, 2506(2023).

    [39] YAN S, WANG Q, LUO S et al. Coal-based S hybrid self-doped porous carbon for high-performance supercapacitors and potassium- ion batteries[J]. Journal of Power Sources, 228151(2020).

    [40] SI L, XIA Q, LIU K et al. Hydrothermal synthesis of layered NiS2/Ti3C2Tx composite electrode for supercapacitors[J]. Materials Chemistry and Physics, 126733(2022).

    [41] HONG X, DENG C, WANG X et al. Carbon nanosheets/MnO2/ NiCo2O4 ternary composite for supercapacitor electrodes[J]. Journal of Energy Storage, 105086(2022).

    [42] KUNWAR J, ACHARYA D, CHHETRI K et al. Cobalt oxide decorated 2D MXene: a hybrid nanocomposite electrode for high- performance supercapacitor application[J]. Journal of Electroanalytical Chemistry, 117915(2023).

    [43] LUO Y, YANG C, TIAN Y et al. A long cycle life asymmetric supercapacitor based on advanced nickel-sulfide/titanium carbide (MXene) nanohybrid and MXene electrodes[J]. Journal of Power Sources, 227694(2020).

    [44] ZHANG X, ZHANG F, WEI D et al. Design and synthesis of K-doped tremella-like δ-MnO2 for high-performance supercapacitor[J]. Journal of Energy Storage, 108468(2023).

    [45] FENG Y, ZHANG M, YAN H et al. Microwave-assisted efficient exfoliation of MXene and its composite for high-performance supercapacitors[J]. Ceramics International, 9518(2022).

    [46] ZHANG Y, CHEN P, WANG Q et al. High-capacity and kinetically accelerated lithium storage in MoO3 enabled by oxygen vacancies and heterostructure[J]. Advanced Energy Materials, 2101712(2021).

    [47] WEN S, LEE J W, YEO I H et al. The role of cations of the electrolyte for the pseudocapacitive behavior of metal oxide electrodes, MnO2 and RuO2[J]. Electrochimica Acta, 849(2004).

    [48] SONG L, DUAN Y, ZHANG Y et al. Promoting defect formation and microwave loss properties in δ-MnO2via Co doping: a first- principles study[J]. Computational Materials Science, 288(2017).

    [49] ZHOU Y, ZHOU Z, HU L et al. A facile approach to tailor electrocatalytic properties of MnO2 through tuning phase transition, surface morphology and band structure[J]. Chemical Engineering Journal, 135561(2022).

    [50] XIAO M X, LI M M, SONG E H et al. Halogenated Ti3C2 MXene as high capacity electrode material for Li-ion batteries[J]. Journal of Inorganic Materials, 660(2022).

    [51] JIN X, SHIN S J, KIM N et al. Superior role of MXene nanosheet as hybridization matrix over graphene in enhancing interfacial electronic coupling and functionalities of metal oxide[J]. Nano Energy, 841(2018).

    Tools

    Get Citation

    Copy Citation Text

    Shaofei CHAO, Yanhui XUE, Qiong WU, Fufa WU, Sufyan Javed MUHAMMAD, Wei ZHANG. Efficient Potassium Storage through Ti-O-H-O Electron Fast Track of MXene Heterojunction[J]. Journal of Inorganic Materials, 2024, 39(11): 1212

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 19, 2024

    Accepted: --

    Published Online: Jan. 21, 2025

    The Author Email: Qiong WU (wuqiong9918@126.com)

    DOI:10.15541/jim20240130

    Topics