Chinese Journal of Liquid Crystals and Displays, Volume. 40, Issue 6, 867(2025)
3D hand reconstruction method based on adaptive occlusion recovery and topology-pose bidirectional perception
[1] AN P, LIU Y Y, ZHOU M et al. A lightweight method for human body and hand mesh reconstruction[J]. Journal of Signal Processing, 40, 1185-1196(2024).
[2] LIU Z B, ZHANG S, BAO Y et al. Progress of application research on cheminformatics in deep learning[J]. Chinese Journal of Applied Chemistry, 40, 360-373(2023).
[4] GUO S X, CAI Q, QI L et al. CLIP-Hand3D: exploiting 3D hand pose estimation via context-aware prompting[C], 4896-4907(2023).
[6] CHEN X Y, LIU Y F, DONG Y J et al. MobRecon: mobile-friendly hand mesh reconstruction from monocular image[C], 20544-20554(2022).
[10] XUE H W, WANG M L. Hand reconstruction incorporating biomechanical constraints and multi-modal data[J]. Journal of Graphics, 44, 794-800(2023).
[20] YANG L L, CHEN S C, YAO A. SemiHand: semi-supervised hand pose estimation with consistency[C], 11364-11373(2021).
[37] ZHENG Y, YANG S Y, WANG T et al. Near infrared spectral analysis based on data augmentation strategy and convolutional neural network[J]. Chinese Journal of Analytical Chemistry, 52, 1266-1276(2024).
Get Citation
Copy Citation Text
Jia LIU, Nanxuan HUANG, Dapeng CHEN, Lina WEI. 3D hand reconstruction method based on adaptive occlusion recovery and topology-pose bidirectional perception[J]. Chinese Journal of Liquid Crystals and Displays, 2025, 40(6): 867
Category:
Received: Dec. 9, 2024
Accepted: --
Published Online: Jul. 14, 2025
The Author Email: Dapeng CHEN (dpchen@nuist.edu.cn)