Journal of Inorganic Materials, Volume. 39, Issue 6, 609(2024)
[3] XU S, ZHENG C, BI Y et al. In-situ TEM investigations on the microstructural evolution of SiC fibers under ion irradiation: amorphization and grain growth[J]. Journal of the European Ceramic Society, 43, : 1376(2023).
[4] SONG C, YE F, CHENG L et al. Long-term ceramic matrix composite for aeroengine[J]. Journal of Advanced Ceramics, 11, : 1343(2022).
[5] CHATEAU C, GÉLÉBART L, BORNERT M et al. Modeling of damage in unidirectional ceramic matrix composites and multi-scale experimental validation on third generation SiC/SiC minicomposites[J]. Journal of the Mechanics and Physics of Solids, 63: 298(2014).
[6] HAN D, YE F, CHENG L et al. Matrix cracking of 2D SiC/SiC composite characterized by
[7] DELAGE J, SAIZ E, AL NASIRI N. Fracture behaviour of SiC/SiC ceramic matrix composite at room temperature[J]. Journal of the European Ceramic Society, 42, : 3156(2022).
[8] ZHAO S, ZHOU X, YU J et al. Mechanical properties and
[12] DETWILER K, HUNT R, OPILA E.
[13] MIYASHITA Y, KANDA K, ZHU S et al. Observations of fatigue damage process in SiC/SiC composites at room and elevated temperatures[J]. International Journal of Fatigue, 24, : 241(2002).
[15] HOLMES J, SOMMACAL S, DAS R et al. Digital image and volume correlation for deformation and damage characterisation of fibre-reinforced composites: a review[J]. Composite Structures, 315: 116994(2023).
[16] YAMAGUCHI I. Speckle displacement and decorrelation in the diffraction and image fields for small object deformation[J]. Optica Acta: International Journal of Optics, 28, : 1359(1981).
[17] PETERS W H, RANSON W F. Digital imaging techniques in experimental stress analysis[J]. Optical Engineering, 21, : 427(1982).
[18] RAJAN V P, ROSSOL M N, ZOK F W. Optimization of digital image correlation for high-resolution strain mapping of ceramic composites[J]. Experimental Mechanics, 52, : 1407(2012).
[19] BERNACHY-BARBE F, GÉLÉBART L, BORNERT M et al. Characterization of SiC/SiC composites damage mechanisms using digital image correlation at the tow scale[J]. Composites Part A: Applied Science and Manufacturing, 68: 101(2015).
[20] BUMGARDNER C H, HEIM F M, ROACHE D C et al. Unveiling hermetic failure of ceramic tubes by digital image correlation and acoustic emission[J]. Journal of the American Ceramic Society, 103, 2146(2020).
[21] BUMGARDNER C H, HEIM F M, ROACHE D C et al. Characterizing environment-dependent fracture mechanisms of ceramic matrix composites
[22] PRESBY M J, KANNAN M, MORSCHER G N et al. An investigation of the end-notched flexure and end-loaded split tests applied to the mode II interlaminar fracture of a SiC/SiC ceramic matrix composite[J]. Journal of Engineering for Gas Turbines and Power, 142: 041027(2020).
[23] TABLEAU N, ABOURA Z, KHELLIL K et al. Accurate measurement of in-plane and out-of-plane shear moduli on 3D woven SiC-SiBC material[J]. Composite Structures, 172: 319(2017).
[24] MORSCHER G N, MAXWELL R. Monitoring tensile fatigue crack growth and fiber failure around a notch in laminate SIC/SIC composites utilizing acoustic emission, electrical resistance, and digital image correlation[J]. Journal of the European Ceramic Society, 39, : 229(2019).
[25] MEYER P, WAAS A M. Mesh-objective two-scale finite element analysis of damage and failure in ceramic matrix composites[J]. Integrating Materials and Manufacturing Innovation, 4, : 63(2015).
[26] MEYER P, WAAS A M. Experimental results on the elevated temperature tensile response of SiC/SiC ceramic matrix notched composites[J]. Composites Part B: Engineering, 143: 26(2018).
[28] MAO W G, CHEN J, SI M S et al. High temperature digital image correlation evaluation of
[29] TRACY J, DALY S, SEVENER K. Multiscale damage characterization in continuous fiber ceramic matrix composites using digital image correlation[J]. Journal of Materials Science, 50, : 5286(2015).
[30] SEVENER K M, TRACY J M, CHEN Z et al. Crack opening behavior in ceramic matrix composites[J]. Journal of the American Ceramic Society, 100, : 4734(2017).
[31] TRACY J, WAAS A, DALY S. A new experimental approach for
[34] LI Q, CHEN Y, CHEN Y et al. Effects of void defects on fracture features and tensile strength of C/SiC composites: an image-based FEM study[J]. Applied Composite Materials, 29, : 1021(2022).
[35] GAO Y, WANG Y, YANG X et al. Synchrotron X-ray tomographic characterization of CVI engineered 2D-woven and 3D-braided SiCf/SiC composites[J]. Ceramics International, 42, : 17137(2016).
[36] SAUCEDO-MORA L, LOWE T, ZHAO S et al. In situ observation of mechanical damage within a SiC-SiC ceramic matrix composite[J]. Journal of Nuclear Materials, 481: 13(2016).
[37] CHEN Y, GÉLÉBART L, CHATEAU C et al. Analysis of the damage initiation in a SiC/SiC composite tube from a direct comparison between large-scale numerical simulation and synchrotron X-ray micro-computed tomography[J]. International Journal of Solids and Structures, 161: 111(2019).
[38] YANG H, XU S, ZHANG D et al. In-situ tensile damage and fracture behavior of PIP SiC/SiC minicomposites at room temperature[J]. Journal of the European Ceramic Society, 41, : 6869(2021).
[39] GUO W, GAO Y, SUN L.
[40] CHATEAU C, GÉLÉBART L, BORNERT M et al. In situ X-ray microtomography characterization of damage in SiCf/SiC minicomposites[J]. Composites Science and Technology, 71, : 916(2011).
[41] HILMAS A M, SEVENER K M, HALLORAN J W. Damage evolution in SiC/SiC unidirectional composites by X-ray tomography[J]. Journal of the American Ceramic Society, 103, : 3436(2020).
[44] ZHANG D, LIU Y, LIU H et al. Characterisation of damage evolution in plain weave SiC/SiC composites using
[45] YANG C, WU S, WU S et al. In-situ characterization on crack propagation behavior of SiCf/SiC composites during monotonic tensile loading[J]. Journal of the European Ceramic Society, 42, : 6836(2022).
[46] ZHU R, QU Z, YANG S et al. An
[47] ZHU R, NIU G, QU Z et al. In-situ quantitative tracking of micro- crack evolution behavior inside CMCs under load at high temperature: a deep learning method[J]. Acta Materialia, 255: 119073(2023).
[48] HABOUB A, BALE H A, NASIATKA J R et al. Tensile testing of materials at high temperatures above 1700 ℃ with
[49] BALE H A, HABOUB A, MACDOWELL A A et al. Real-time quantitative imaging of failure events in materials under load at temperatures above 1600 ℃[J]. Nature Materials, 12, 1): 40(2013).
[50] MAZARS V, CATY O, COUÉGNAT G et al. Damage investigation and modeling of 3D woven ceramic matrix composites from X-ray tomography
[51] LIU C, CHEN Y, SHI D et al. In situ investigation of failure in 3D braided SiCf/SiC composites under flexural loading[J]. Composite Structures, 270: 114067(2021).
[52] CROOM B P, XU P, LAHODA E J et al. Quantifying the three-dimensional damage and stress redistribution mechanisms of braided SiC/SiC composites by
[53] CHEN Y, GÉLÉBART L, CHATEAU C et al. 3D detection and quantitative characterization of cracks in a ceramic matrix composite tube using X-ray computed tomography[J]. Experimental Mechanics, 60, : 409(2020).
[54] CHEN Y, GÉLÉBART L, CHATEAU C et al. Crack initiation and propagation in braided SiC/SiC composite tubes: effect of braiding angle[J]. Journal of the European Ceramic Society, 40, : 4403(2020).
[55] FORNA-KREUTZER J P, ELL J, BARNARD H et al. Full-field characterisation of oxide-oxide ceramic-matrix composites using X-ray computed micro-tomography and digital volume correlation under load at high temperatures[J]. Materials & Design, 208: 109899(2021).
[56] GAO X, LEI B, ZHANG Y et al. Identification of microstructures and damages in silicon carbide ceramic matrix composites by deep learning[J]. Materials Characterization, 196: 112608(2023).
[57] DU Y, ZHANG D, WANG L et al. Damage mechanism characterisation of plain weave ceramic matrix composites under in-plane shear using
[58] BADRAN A, MARSHALL D, LEGAULT Z et al. Automated segmentation of computed tomography images of fiber-reinforced composites by deep learning[J]. Journal of Materials Science, 55, : 16273(2020).
[59] GROSSE C U, OHTSU M, AGGELIS D G et al[M]. Acoustic emission testing:basics for research-applications in engineering(2022).
[60] MAILLET E, GODIN N, R’MILI M et al. Damage monitoring and identification in SiC/SiC minicomposites using combined acousto-ultrasonics and acoustic emission[J]. Composites Part A: Applied Science and Manufacturing, 57: 8(2014).
[61] MOEVUS M, GODIN N, R’MILI M et al. Analysis of damage mechanisms and associated acoustic emission in two SiCf/[Si-B-C] composites exhibiting different tensile behaviours. Part II: unsupervised acoustic emission data clustering[J]. Composites Science and Technology, 68, : 1258(2008).
[62] SHAN Q, XUE Y, HU J. The anti-oxidation mechanism of SiCf/SiC-B4C modified with Al2O3 in wet atmosphere based on machine learning[J]. Journal of the American Ceramic Society, 105, : 5853(2022).
[63] SHAN Q, XU Q, XUE Y et al. The tensile damage behavior of SiCf/SiC-B4C after oxidation in wet atmosphere based on acoustic emission pattern recognition[J]. Journal of the American Ceramic Society, 104, : 4131(2021).
[64] MUIR C, TULSHIBAGWALE N, FURST A et al. Quantitative benchmarking of acoustic emission machine learning frameworks for damage mechanism identification[J]. Integrating Materials and Manufacturing Innovation, 12, : 70(2023).
[65] MORSCHER G N. Modal acoustic emission of damage accumulation in a woven SiC/SiC composite[J]. Composites Science and Technology, 59, : 687(1999).
[66] SWAMINATHAN B, MCCARTHY N R, ALMANSOUR A S et al. Microscale characterization of damage accumulation in CMCs[J]. Journal of the European Ceramic Society, 41, : 3082(2021).
[67] NOZAWA T, KOYANAGI T, KATOH Y et al. Failure evaluation of neutron-irradiated SiC/SiC composites by underwater acoustic emission[J]. Journal of Nuclear Materials, 566: 153787(2022).
[68] YANG L, ZHOU Y C, LU C. Damage evolution and rupture time prediction in thermal barrier coatings subjected to cyclic heating and cooling: an acoustic emission method[J]. Acta Materialia, 59, : 6519(2011).
[71] MOMON S, MOEVUS M, GODIN N et al. Acoustic emission and lifetime prediction during static fatigue tests on ceramic- matrix-composite at high temperature under air.[J]. Composites Part A: Applied Science and Manufacturing, 41, : 913(2010).
[72] MOMON S, GODIN N, REYNAUD P et al. Unsupervised and supervised classification of AE data collected during fatigue test on CMC at high temperature[J]. Composites Part A: Applied Science and Manufacturing, 43, : 254(2012).
[73] MAILLET E. Analysis of acoustic emission energy release during static fatigue tests at intermediate temperatures on ceramic matrix composites: towards rupture time prediction[J]. Composites Science and Technology, 72, : 1001(2012).
[74] MAILLET E, GODIN N, R’MILI M et al. Real-time evaluation of energy attenuation: a novel approach to acoustic emission analysis for damage monitoring of ceramic matrix composites[J]. Journal of the European Ceramic Society, 34, : 1673(2014).
[75] GODIN N, REYNAUD P, FANTOZZI G. Challenges and limitations in the identification of acoustic emission signature of damage mechanisms in composites materials[J]. Applied Sciences, 8, : 1267(2018).
[76] SMITH C E, MORSCHER G N, XIA Z H. Monitoring damage accumulation in ceramic matrix composites using electrical resistivity[J]. Scripta Materialia, 59, : 463(2008).
[77] MANSOUR R, MAILLET E, MORSCHER G N. Monitoring interlaminar crack growth in ceramic matrix composites using electrical resistance[J]. Scripta Materialia, 98: 9(2015).
[78] XIA Z, SUJIDKUL T, NIU J et al. Modeling of electromechanical behavior of woven SiC/SiC composites[J]. Composites Part A: Applied Science and Manufacturing, 43, : 1730(2012).
[79] SMITH C, MORSCHER G, XIA Z. Electrical resistance of SiC/SiC ceramic matrix composites for damage detection and life-prediction: E-17375[J]. Cleveland: NASA Glenn Research Center, 9-18(2009).
[80] APPLEBY M, MORSCHER G, ZHU D. Correlation of electrical resistance to CMC stress-strain and fracture behavior under high heat-flux thermal and stress gradients: GRC-E-DAA-TN20638[J]. Cleveland: NASA Glenn Research Center(2015).
[81] SIMON C, REBILLAT F, CAMUS G. Electrical resistivity monitoring of a SiC/[Si-B-C] composite under oxidizing environments[J]. Acta Materialia, 132: 586(2017).
[82] MEI H, CHENG L. Damage analysis of 2D C/SiC composites subjected to thermal cycling in oxidizing environments by mechanical and electrical characterization[J]. Materials Letters, 59, : 3246(2005).
[85] WANG F, TENG X, HU X et al. Damage and failure analysis of a SiCf/SiC ceramic matrix composite using digital image correlation and acoustic emission[J]. Ceramics International, 48, : 4699(2022).
[86] DUAN Y, QIU H, YANG T et al. Flexural failure mechanism of 2.5D woven SiCf/SiC composites: combination of acoustic emission, digital image correlation and X-ray tomography[J]. Composites Communications, 28: 100921(2021).
[87] MAILLET E, SINGHAL A, HILMAS A et al. Combining
[88] EL RASSI J, HEGEMAN A L, MORSCHER G N. A ply-level electrical resistance approach to monitor crack evolution in a laminate SiC/SiC composites[J]. Journal of the European Ceramic Society, 42, : 5355(2022).
[89] WHITLOW T, JONES E, PRZYBYLA C.
[90] SIMON C, REBILLAT F, HERB V et al. Monitoring damage evolution of SiCf/[SiBC]m composites using electrical resistivity: crack density-based electromechanical modeling[J]. Acta Materialia, 124: 579(2017).
[91] MORSCHER G N, GORDON N A. Acoustic emission and electrical resistance in SiC-based laminate ceramic composites tested under tensile loading[J]. Journal of the European Ceramic Society, 37, : 3861(2017).
[92] APPLEBY M P, ZHU D, MORSCHER G N. Mechanical properties and real-time damage evaluations of environmental barrier coated SiC/SiC CMCs subjected to tensile loading under thermal gradients[J]. Surface and Coatings Technology, 284: 318(2015).
[93] BROCKMAN C, SWITZER C, ALMANSOUR A et al. High-temperature mechanical tensile testing of unidirectional SiCf/SiC composites using a versatile lamp furnace[conf-proc]. 11th International Conference on High Temperature Ceramic Matrix Composites, Jeju(2023).
Get Citation
Copy Citation Text
Xiaochen WU, Ruixiao ZHENG, Lu LI, Haolin MA, Peihang ZHAO, Chaoli MA.
Category:
Received: Dec. 18, 2023
Accepted: --
Published Online: Jul. 31, 2024
The Author Email: Ruixiao ZHENG (zhengruixiao@buaa.edu.cn), Lu LI (li_lu@buaa.edu.cn)