Journal of Inorganic Materials, Volume. 39, Issue 6, 609(2024)

Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments

Xiaochen WU1, Ruixiao ZHENG1、*, Lu LI2、*, Haolin MA2, Peihang ZHAO1, and Chaoli MA2
Author Affiliations
  • 11. School of Materials Science and Engineering, Beihang University, Beijing 100191, China
  • 22. Research Institute for Frontier Science, Beihang University, Beijing 100191, China
  • show less
    References(79)

    [3] XU S, ZHENG C, BI Y et al. In-situ TEM investigations on the microstructural evolution of SiC fibers under ion irradiation: amorphization and grain growth[J]. Journal of the European Ceramic Society, 43, : 1376(2023).

    [4] SONG C, YE F, CHENG L et al. Long-term ceramic matrix composite for aeroengine[J]. Journal of Advanced Ceramics, 11, : 1343(2022).

    [5] CHATEAU C, GÉLÉBART L, BORNERT M et al. Modeling of damage in unidirectional ceramic matrix composites and multi-scale experimental validation on third generation SiC/SiC minicomposites[J]. Journal of the Mechanics and Physics of Solids, 63: 298(2014).

    [6] HAN D, YE F, CHENG L et al. Matrix cracking of 2D SiC/SiC composite characterized by in situ SEM and nano-CT[J]. Ceramics International, 49, : 12508(2023).

    [7] DELAGE J, SAIZ E, AL NASIRI N. Fracture behaviour of SiC/SiC ceramic matrix composite at room temperature[J]. Journal of the European Ceramic Society, 42, : 3156(2022).

    [8] ZHAO S, ZHOU X, YU J et al. Mechanical properties and in situ crack growth observation of SiC/SiC composites[J]. Ceramics International, 40, : 7481(2014).

    [12] DETWILER K, HUNT R, OPILA E. In-situ observation of micro-cracking in a SiC/BN/SiC ceramic matrix composite under tension[J]. Open Ceramics, 14: 100366(2023).

    [13] MIYASHITA Y, KANDA K, ZHU S et al. Observations of fatigue damage process in SiC/SiC composites at room and elevated temperatures[J]. International Journal of Fatigue, 24, : 241(2002).

    [15] HOLMES J, SOMMACAL S, DAS R et al. Digital image and volume correlation for deformation and damage characterisation of fibre-reinforced composites: a review[J]. Composite Structures, 315: 116994(2023).

    [16] YAMAGUCHI I. Speckle displacement and decorrelation in the diffraction and image fields for small object deformation[J]. Optica Acta: International Journal of Optics, 28, : 1359(1981).

    [17] PETERS W H, RANSON W F. Digital imaging techniques in experimental stress analysis[J]. Optical Engineering, 21, : 427(1982).

    [18] RAJAN V P, ROSSOL M N, ZOK F W. Optimization of digital image correlation for high-resolution strain mapping of ceramic composites[J]. Experimental Mechanics, 52, : 1407(2012).

    [19] BERNACHY-BARBE F, GÉLÉBART L, BORNERT M et al. Characterization of SiC/SiC composites damage mechanisms using digital image correlation at the tow scale[J]. Composites Part A: Applied Science and Manufacturing, 68: 101(2015).

    [20] BUMGARDNER C H, HEIM F M, ROACHE D C et al. Unveiling hermetic failure of ceramic tubes by digital image correlation and acoustic emission[J]. Journal of the American Ceramic Society, 103, 2146(2020).

    [21] BUMGARDNER C H, HEIM F M, ROACHE D C et al. Characterizing environment-dependent fracture mechanisms of ceramic matrix composites via digital image correlation[J]. Journal of the American Ceramic Society, 104, : 6545(2021).

    [22] PRESBY M J, KANNAN M, MORSCHER G N et al. An investigation of the end-notched flexure and end-loaded split tests applied to the mode II interlaminar fracture of a SiC/SiC ceramic matrix composite[J]. Journal of Engineering for Gas Turbines and Power, 142: 041027(2020).

    [23] TABLEAU N, ABOURA Z, KHELLIL K et al. Accurate measurement of in-plane and out-of-plane shear moduli on 3D woven SiC-SiBC material[J]. Composite Structures, 172: 319(2017).

    [24] MORSCHER G N, MAXWELL R. Monitoring tensile fatigue crack growth and fiber failure around a notch in laminate SIC/SIC composites utilizing acoustic emission, electrical resistance, and digital image correlation[J]. Journal of the European Ceramic Society, 39, : 229(2019).

    [25] MEYER P, WAAS A M. Mesh-objective two-scale finite element analysis of damage and failure in ceramic matrix composites[J]. Integrating Materials and Manufacturing Innovation, 4, : 63(2015).

    [26] MEYER P, WAAS A M. Experimental results on the elevated temperature tensile response of SiC/SiC ceramic matrix notched composites[J]. Composites Part B: Engineering, 143: 26(2018).

    [28] MAO W G, CHEN J, SI M S et al. High temperature digital image correlation evaluation of in-situ failure mechanism: an experimental framework with application to C/SiC composites[J]. Materials Science and Engineering: A, 665: 26(2016).

    [29] TRACY J, DALY S, SEVENER K. Multiscale damage characterization in continuous fiber ceramic matrix composites using digital image correlation[J]. Journal of Materials Science, 50, : 5286(2015).

    [30] SEVENER K M, TRACY J M, CHEN Z et al. Crack opening behavior in ceramic matrix composites[J]. Journal of the American Ceramic Society, 100, : 4734(2017).

    [31] TRACY J, WAAS A, DALY S. A new experimental approach for in situ damage assessment in fibrous ceramic matrix composites at high temperature[J]. Journal of the American Ceramic Society, 98, 1898(2015).

    [34] LI Q, CHEN Y, CHEN Y et al. Effects of void defects on fracture features and tensile strength of C/SiC composites: an image-based FEM study[J]. Applied Composite Materials, 29, : 1021(2022).

    [35] GAO Y, WANG Y, YANG X et al. Synchrotron X-ray tomographic characterization of CVI engineered 2D-woven and 3D-braided SiCf/SiC composites[J]. Ceramics International, 42, : 17137(2016).

    [36] SAUCEDO-MORA L, LOWE T, ZHAO S et al. In situ observation of mechanical damage within a SiC-SiC ceramic matrix composite[J]. Journal of Nuclear Materials, 481: 13(2016).

    [37] CHEN Y, GÉLÉBART L, CHATEAU C et al. Analysis of the damage initiation in a SiC/SiC composite tube from a direct comparison between large-scale numerical simulation and synchrotron X-ray micro-computed tomography[J]. International Journal of Solids and Structures, 161: 111(2019).

    [38] YANG H, XU S, ZHANG D et al. In-situ tensile damage and fracture behavior of PIP SiC/SiC minicomposites at room temperature[J]. Journal of the European Ceramic Society, 41, : 6869(2021).

    [39] GUO W, GAO Y, SUN L. In-situ CT characterization of 2D woven SiCf/SiC composite loading under compression[J]. Science and Engineering of Composite Materials, 29, : 394(2022).

    [40] CHATEAU C, GÉLÉBART L, BORNERT M et al. In situ X-ray microtomography characterization of damage in SiCf/SiC minicomposites[J]. Composites Science and Technology, 71, : 916(2011).

    [41] HILMAS A M, SEVENER K M, HALLORAN J W. Damage evolution in SiC/SiC unidirectional composites by X-ray tomography[J]. Journal of the American Ceramic Society, 103, : 3436(2020).

    [44] ZHANG D, LIU Y, LIU H et al. Characterisation of damage evolution in plain weave SiC/SiC composites using in situ X-ray micro-computed tomography[J]. Composite Structures, 275: 114447(2021).

    [45] YANG C, WU S, WU S et al. In-situ characterization on crack propagation behavior of SiCf/SiC composites during monotonic tensile loading[J]. Journal of the European Ceramic Society, 42, : 6836(2022).

    [46] ZHU R, QU Z, YANG S et al. An in situ microtomography apparatus with a laboratory X-ray source for elevated temperatures of up to 1000 ℃[J]. Review of Scientific Instruments, 92, : 033704(2021).

    [47] ZHU R, NIU G, QU Z et al. In-situ quantitative tracking of micro- crack evolution behavior inside CMCs under load at high temperature: a deep learning method[J]. Acta Materialia, 255: 119073(2023).

    [48] HABOUB A, BALE H A, NASIATKA J R et al. Tensile testing of materials at high temperatures above 1700 ℃ with in situ synchrotron X-ray micro-tomography[J]. Review of Scientific Instruments, 85, : 083702(2014).

    [49] BALE H A, HABOUB A, MACDOWELL A A et al. Real-time quantitative imaging of failure events in materials under load at temperatures above 1600 ℃[J]. Nature Materials, 12, 1): 40(2013).

    [50] MAZARS V, CATY O, COUÉGNAT G et al. Damage investigation and modeling of 3D woven ceramic matrix composites from X-ray tomography in-situ tensile tests[J]. Acta Materialia, 140: 130(2017).

    [51] LIU C, CHEN Y, SHI D et al. In situ investigation of failure in 3D braided SiCf/SiC composites under flexural loading[J]. Composite Structures, 270: 114067(2021).

    [52] CROOM B P, XU P, LAHODA E J et al. Quantifying the three-dimensional damage and stress redistribution mechanisms of braided SiC/SiC composites by in situ volumetric digital image correlation[J]. Scripta Materialia, 130: 238(2017).

    [53] CHEN Y, GÉLÉBART L, CHATEAU C et al. 3D detection and quantitative characterization of cracks in a ceramic matrix composite tube using X-ray computed tomography[J]. Experimental Mechanics, 60, : 409(2020).

    [54] CHEN Y, GÉLÉBART L, CHATEAU C et al. Crack initiation and propagation in braided SiC/SiC composite tubes: effect of braiding angle[J]. Journal of the European Ceramic Society, 40, : 4403(2020).

    [55] FORNA-KREUTZER J P, ELL J, BARNARD H et al. Full-field characterisation of oxide-oxide ceramic-matrix composites using X-ray computed micro-tomography and digital volume correlation under load at high temperatures[J]. Materials & Design, 208: 109899(2021).

    [56] GAO X, LEI B, ZHANG Y et al. Identification of microstructures and damages in silicon carbide ceramic matrix composites by deep learning[J]. Materials Characterization, 196: 112608(2023).

    [57] DU Y, ZHANG D, WANG L et al. Damage mechanism characterisation of plain weave ceramic matrix composites under in-plane shear using in-situ X-ray micro-CT and deep-learning-based image segmentation[J]. Journal of the European Ceramic Society, 44, : 142(2024).

    [58] BADRAN A, MARSHALL D, LEGAULT Z et al. Automated segmentation of computed tomography images of fiber-reinforced composites by deep learning[J]. Journal of Materials Science, 55, : 16273(2020).

    [59] GROSSE C U, OHTSU M, AGGELIS D G et al[M]. Acoustic emission testing:basics for research-applications in engineering(2022).

    [60] MAILLET E, GODIN N, R’MILI M et al. Damage monitoring and identification in SiC/SiC minicomposites using combined acousto-ultrasonics and acoustic emission[J]. Composites Part A: Applied Science and Manufacturing, 57: 8(2014).

    [61] MOEVUS M, GODIN N, R’MILI M et al. Analysis of damage mechanisms and associated acoustic emission in two SiCf/[Si-B-C] composites exhibiting different tensile behaviours. Part II: unsupervised acoustic emission data clustering[J]. Composites Science and Technology, 68, : 1258(2008).

    [62] SHAN Q, XUE Y, HU J. The anti-oxidation mechanism of SiCf/SiC-B4C modified with Al2O3 in wet atmosphere based on machine learning[J]. Journal of the American Ceramic Society, 105, : 5853(2022).

    [63] SHAN Q, XU Q, XUE Y et al. The tensile damage behavior of SiCf/SiC-B4C after oxidation in wet atmosphere based on acoustic emission pattern recognition[J]. Journal of the American Ceramic Society, 104, : 4131(2021).

    [64] MUIR C, TULSHIBAGWALE N, FURST A et al. Quantitative benchmarking of acoustic emission machine learning frameworks for damage mechanism identification[J]. Integrating Materials and Manufacturing Innovation, 12, : 70(2023).

    [65] MORSCHER G N. Modal acoustic emission of damage accumulation in a woven SiC/SiC composite[J]. Composites Science and Technology, 59, : 687(1999).

    [66] SWAMINATHAN B, MCCARTHY N R, ALMANSOUR A S et al. Microscale characterization of damage accumulation in CMCs[J]. Journal of the European Ceramic Society, 41, : 3082(2021).

    [67] NOZAWA T, KOYANAGI T, KATOH Y et al. Failure evaluation of neutron-irradiated SiC/SiC composites by underwater acoustic emission[J]. Journal of Nuclear Materials, 566: 153787(2022).

    [68] YANG L, ZHOU Y C, LU C. Damage evolution and rupture time prediction in thermal barrier coatings subjected to cyclic heating and cooling: an acoustic emission method[J]. Acta Materialia, 59, : 6519(2011).

    [71] MOMON S, MOEVUS M, GODIN N et al. Acoustic emission and lifetime prediction during static fatigue tests on ceramic- matrix-composite at high temperature under air.[J]. Composites Part A: Applied Science and Manufacturing, 41, : 913(2010).

    [72] MOMON S, GODIN N, REYNAUD P et al. Unsupervised and supervised classification of AE data collected during fatigue test on CMC at high temperature[J]. Composites Part A: Applied Science and Manufacturing, 43, : 254(2012).

    [73] MAILLET E. Analysis of acoustic emission energy release during static fatigue tests at intermediate temperatures on ceramic matrix composites: towards rupture time prediction[J]. Composites Science and Technology, 72, : 1001(2012).

    [74] MAILLET E, GODIN N, R’MILI M et al. Real-time evaluation of energy attenuation: a novel approach to acoustic emission analysis for damage monitoring of ceramic matrix composites[J]. Journal of the European Ceramic Society, 34, : 1673(2014).

    [75] GODIN N, REYNAUD P, FANTOZZI G. Challenges and limitations in the identification of acoustic emission signature of damage mechanisms in composites materials[J]. Applied Sciences, 8, : 1267(2018).

    [76] SMITH C E, MORSCHER G N, XIA Z H. Monitoring damage accumulation in ceramic matrix composites using electrical resistivity[J]. Scripta Materialia, 59, : 463(2008).

    [77] MANSOUR R, MAILLET E, MORSCHER G N. Monitoring interlaminar crack growth in ceramic matrix composites using electrical resistance[J]. Scripta Materialia, 98: 9(2015).

    [78] XIA Z, SUJIDKUL T, NIU J et al. Modeling of electromechanical behavior of woven SiC/SiC composites[J]. Composites Part A: Applied Science and Manufacturing, 43, : 1730(2012).

    [79] SMITH C, MORSCHER G, XIA Z. Electrical resistance of SiC/SiC ceramic matrix composites for damage detection and life-prediction: E-17375[J]. Cleveland: NASA Glenn Research Center, 9-18(2009).

    [80] APPLEBY M, MORSCHER G, ZHU D. Correlation of electrical resistance to CMC stress-strain and fracture behavior under high heat-flux thermal and stress gradients: GRC-E-DAA-TN20638[J]. Cleveland: NASA Glenn Research Center(2015).

    [81] SIMON C, REBILLAT F, CAMUS G. Electrical resistivity monitoring of a SiC/[Si-B-C] composite under oxidizing environments[J]. Acta Materialia, 132: 586(2017).

    [82] MEI H, CHENG L. Damage analysis of 2D C/SiC composites subjected to thermal cycling in oxidizing environments by mechanical and electrical characterization[J]. Materials Letters, 59, : 3246(2005).

    [85] WANG F, TENG X, HU X et al. Damage and failure analysis of a SiCf/SiC ceramic matrix composite using digital image correlation and acoustic emission[J]. Ceramics International, 48, : 4699(2022).

    [86] DUAN Y, QIU H, YANG T et al. Flexural failure mechanism of 2.5D woven SiCf/SiC composites: combination of acoustic emission, digital image correlation and X-ray tomography[J]. Composites Communications, 28: 100921(2021).

    [87] MAILLET E, SINGHAL A, HILMAS A et al. Combining in-situ synchrotron X-ray microtomography and acoustic emission to characterize damage evolution in ceramic matrix composites[J]. Journal of the European Ceramic Society, 39, : 3546(2019).

    [88] EL RASSI J, HEGEMAN A L, MORSCHER G N. A ply-level electrical resistance approach to monitor crack evolution in a laminate SiC/SiC composites[J]. Journal of the European Ceramic Society, 42, : 5355(2022).

    [89] WHITLOW T, JONES E, PRZYBYLA C. In-situ damage monitoring of a SiC/SiC ceramic matrix composite using acoustic emission and digital image correlation[J]. Composite Structures, 158: 245(2016).

    [90] SIMON C, REBILLAT F, HERB V et al. Monitoring damage evolution of SiCf/[SiBC]m composites using electrical resistivity: crack density-based electromechanical modeling[J]. Acta Materialia, 124: 579(2017).

    [91] MORSCHER G N, GORDON N A. Acoustic emission and electrical resistance in SiC-based laminate ceramic composites tested under tensile loading[J]. Journal of the European Ceramic Society, 37, : 3861(2017).

    [92] APPLEBY M P, ZHU D, MORSCHER G N. Mechanical properties and real-time damage evaluations of environmental barrier coated SiC/SiC CMCs subjected to tensile loading under thermal gradients[J]. Surface and Coatings Technology, 284: 318(2015).

    [93] BROCKMAN C, SWITZER C, ALMANSOUR A et al. High-temperature mechanical tensile testing of unidirectional SiCf/SiC composites using a versatile lamp furnace[conf-proc]. 11th International Conference on High Temperature Ceramic Matrix Composites, Jeju(2023).

    Tools

    Get Citation

    Copy Citation Text

    Xiaochen WU, Ruixiao ZHENG, Lu LI, Haolin MA, Peihang ZHAO, Chaoli MA. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 18, 2023

    Accepted: --

    Published Online: Jul. 31, 2024

    The Author Email: Ruixiao ZHENG (zhengruixiao@buaa.edu.cn), Lu LI (li_lu@buaa.edu.cn)

    DOI:10.15541/jim20230581

    Topics