Acta Optica Sinica, Volume. 44, Issue 17, 1732013(2024)

Mid-Infrared Laser Generation by Intra-Pulse Difference Frequency Based on Ultrafast Fiber Light Source (Invited)

Chen Chen1, Wanli Luo2, and Xueming Liu1,3、*
Author Affiliations
  • 1School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu , China
  • 2School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin , China
  • 3School of Electronic Science & Engineering, Southeast University, Nanjing 210096, Jiangsu , China
  • show less
    References(150)

    [8] Vurgaftman I, Meyer J R. Analysis of limitations to wallplug efficiency and output power for quantum cascade lasers[J]. Journal of Applied Physics, 99, 123108(2006).

    [13] Sanamyan T, Evans J W, McDaniel S A. Path to doubling the efficiency of mid-IR erbium lasers[J]. Optics Express, 25, 16452-16457(2017).

    [15] Chang T Y, Wood O R. An optically pumped CO2 laser[J]. IEEE Journal of Quantum Electronics, 8, 598(1972).

    [18] Mirov S B, Moskalev I S, Vasilyev S et al. Frontiers of mid-IR lasers based on transition metal doped chalcogenides[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1601829(2018).

    [22] Kaindl R A, Smith D C, Joschko M et al. Femtosecond infrared pulses tunable from 9 to 18 µm at an 88-MHz repetition rate[J]. Optics Letters, 23, 861-863(1998).

    [25] Cui Y L, Huang W, Wang Z F et al. 4.3 μm fiber laser in CO2-filled hollow-core silica fibers[J]. Optica, 6, 951-954(2019).

    [28] Venck S, St-Hilaire F, Brilland L et al. 2-10 µm mid-infrared fiber-based supercontinuum laser source: experiment and simulation[J]. Laser & Photonics Reviews, 14, 2000011(2020).

    [37] Chen C, Xu Q, Sun R et al. Q-switched mode-locked all-solid-state Tm∶LuAG ceramic laser[J]. Infrared and Laser Engineering, 50, 20190563(2021).

    [38] Wei W L, Zhang N, Song Q S et al. 2 μm mode-locked Tm∶GdScO3 laser[J]. Acta Optica Sinica, 43, 2214002(2023).

    [46] Lagatsky A A, Fusari F, Calvez S et al. Femtosecond pulse operation of a Tm, Ho-codoped crystalline laser near 2 μm[J]. Optics Letters, 35, 172-174(2010).

    [47] Lagatsky A A, Koopmann P, Antipov O L et al. Femtosecond pulse generation with Tm-doped sesquioxides[C].

    [49] Yang K J, Heinecke D, Paajaste J et al. Mode-locking of 2 μm Tm, Ho∶YAG laser with GaInAs and GaSb-based SESAMs[J]. Optics Express, 21, 4311-4318(2013).

    [51] Luo Y Z, Yu S Q, Yin M et al. Research progress on transition metal ions doped Ⅱ-Ⅵ group mid-infrared laser ceramics[J]. Journal of Synthetic Crystals, 50, 947-958(2021).

    [53] Demirbas U, Sennaroglu A. Intracavity-pumped Cr2+:ZnSe laser with ultrabroad tuning range between 1880 and 3100 nm[J]. Optics Letters, 31, 2293-2295(2006).

    [59] Li J F, Lei H, Wang S Y et al. Research progress in 2-5 μm all-solid-state mid-infrared high-power fiber laser sources (invited)[J]. Chinese Journal of Lasers, 51, 0101005(2024).

    [60] Li Y K, Li M M, Duan R D et al. Transmission performance of a 1.96 µm active mode-locked laser in smoke channel[J]. Applied Optics, 61, 1912-1917(2022).

    [63] Wang Y C, Jobin F, Duval S et al. Ultrafast Dy3+∶fluoride fiber laser beyond 3 μm[J]. Optics Letters, 44, 395-398(2019).

    [64] Wei C, Shi H X, Luo H Y et al. 34 nm-wavelength-tunable picosecond Ho3+/Pr3+-codoped ZBLAN fiber laser[J]. Optics Express, 25, 19170-19178(2017).

    [76] Feng X. Research on broadband femtosecond mid-infrared lasers based on difference frequency generators[D](2022).

    [80] Liu Y. High-power tunable long-wave mid-IR femtosecond light source[D](2023).

    [81] Zhou L. Broadband mid-infrared optical frequency comb based on difference frequency generation via lithium niobate crystal[D](2021).

    [83] Liu J G, Liu W Q, Zhang Y J et al. Detection of formaldehyde using mid-infrared difference-frequency-basedtunable absorption spectrometer at room temperature[J]. Infrared and Laser Engineering, 35, 211-215(2006).

    [85] Petit Y, Boulanger B, Segonds P et al. Angular quasi-phase-matching[J]. Physical Review A, 76, 063817(2007).

    [86] Liu X M, Zhang H Y, Guo Y L et al. Optimal design and applications for quasi-phase-matching three-wave mixing[J]. IEEE Journal of Quantum Electronics, 38, 1225-1233(2002).

    [90] Liu X M, Zhang H Y, Guo Y L. Theoretical analyses and optimizations for wavelength conversion by quasi-phase-matching difference frequency generation[J]. Journal of Lightwave Technology, 19, 1785-1792(2001).

    [92] Murray R T, Runcorn T H, Kelleher E J R et al. Highly efficient mid-infrared difference-frequency generation using synchronously pulsed fiber lasers[J]. Optics Letters, 41, 2446-2449(2016).

    [98] Schoenfeld C, Feuerer L, Heinrich A C et al. Nonlinear generation, compression and spatio-temporal analysis of sub-GV/cm-class femtosecond mid-infrared transients[J]. Laser & Photonics Reviews, 18, 2301152(2024).

    [102] Yang M, Wen Q, Liu T T et al. Integrated mid-infrared dual-comb system based on a dual-wavelength laser (invited)[J]. Acta Photonica Sinica, 52, 0352107(2023).

    [107] Zhang J W, Fai Mak K, Nagl N et al. Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm-1[J]. Light: Science & Applications, 7, 17180(2018).

    [110] Lind A J, Kowligy A, Timmers H et al. Mid-infrared frequency comb generation and spectroscopy with few-cycle pulses and χ(2) nonlinear optics[J]. Physical Review Letters, 124, 133904(2020).

    [111] Lesko D M B, Timmers H, Xing S D et al. A six-octave optical frequency comb from a scalable few-cycle erbium fibre laser[J]. Nature Photonics, 15, 281-286(2021).

    [113] Lee K F, Schunemann P G, Fermann M E. Milliwatt midinfrared from intrapulse difference frequency with a single erbium fiber laser[J]. Proceedings of SPIE, 11264, 1126404(2020).

    [116] Carnio B N, Zhang M, Zawilski K T et al. Intra-pulse difference frequency generation in ZnGeP2 for high-frequency terahertz radiation generation[J]. Scientific Reports, 13, 8161(2023).

    [117] Vasilyev S, Moskalev I S, Smolski V O et al. Super-octave longwave mid-infrared coherent transients produced by optical rectification of few-cycle 2.5-μm pulses[J]. Optica, 6, 111-114(2019).

    [124] Kowligy A S, Lind A, Hickstein D D et al. Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides[J]. Optics Letters, 43, 1678-1681(2018).

    [125] Sharpe S W, Johnson T J, Sams R L et al. Gas-phase databases for quantitative infrared spectroscopy[J]. Applied Spectroscopy, 58, 1452-1461(2004).

    [128] Gordon I E, Rothman L S, Hargreaves R J et al. The HITRAN 2020 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 277, 107949(2022).

    [130] Butler T P, Lilienfein N, Xu J et al. Multi-octave spanning, Watt-level ultrafast mid-infrared source[J]. Journal of Physics: Photonics, 1, 044006(2019).

    [134] Nakamura T, Badarla V R, Hashimoto K et al. Simple approach to broadband mid-infrared pulse generation with a mode-locked Yb-doped fiber laser[J]. Optics Letters, 47, 1790-1793(2022).

    [141] Richter D, Fried A, Wert B P et al. Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection[J]. Applied Physics B, 75, 281-288(2002).

    [150] Zhang Y N, Wu K X, Guang Z et al. Advances and challenges of ultrafast fiber lasers in 2-4 µm mid-infrared spectral regions[J]. Laser & Photonics Reviews, 18, 2300786(2024).

    Tools

    Get Citation

    Copy Citation Text

    Chen Chen, Wanli Luo, Xueming Liu. Mid-Infrared Laser Generation by Intra-Pulse Difference Frequency Based on Ultrafast Fiber Light Source (Invited)[J]. Acta Optica Sinica, 2024, 44(17): 1732013

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Ultrafast Optics

    Received: Jul. 1, 2024

    Accepted: Aug. 23, 2024

    Published Online: Sep. 11, 2024

    The Author Email: Liu Xueming (liuxueming72@hotmail.com)

    DOI:10.3788/AOS241225

    Topics