Infrared Technology, Volume. 46, Issue 7, 815(2024)
Optimized Design of nBn LWIR HgCdTe Devices
[1] [1] CHU Junhao. Narrow-gap Semiconductor Physics[M]. Beijing: Science Press, 2005.
[2] [2] YANG Jianrong. Physics and Technology of HgCdTe Materials[M]. Beijing: National Defense Industry Press, 2012.
[3] [3] SHI Yanli. Choice and development of the third-generation infrared detectors[J]. Infrared Technology, 2013, 35(1): 1-8.
[4] [4] Rogalski A, Antoszewski J, Faraone L. Third-generation infrared photodetector arrays[J]. Journal of Applied Physics, 2009, 105(9): 091101-1.
[5] [5] Rogalski A. New material systems for third generation infrared detectors[C]//SPIE, 2009, 7388: 73880J-1.
[6] [6] Maimon S, Wicks G W. nBn detector, an infrared detector with reduced dark current and higher operating temperature[J]. Applied Physics Letters, 2006, 151109(89): 1-3.
[7] [7] Rodriguez J B, Plis E, Bishop G, et al. nBn structure based on InAs/GaSb type-II strained layer superlattices[J]. Applied Physics Letters, 2007, 043514(91): 1-2.
[8] [8] Itsuno A M, Phillips J D, Selicu S. Design and modeling of HgCdTe nBn detectors[J]. Journal of Electronic Materials, 2011, 40(8): 1624-1629.
[9] [9] Itsuno A M, Phillips J D, Velicu S. Mid-wave infrared HgCdTe nBn photodetector[J]. Applied Physics Letters, 2012, 161102(100): 2-4.
[10] [10] Itsuno A M, Phillips J D, Velicu S. Design of an auger-suppressed unipolar HgCdTe NBvN photodetector[J]. Journal of Electronic Materials, 2012, 41(10): 2886-2993.
[11] [11] Kopytko M, Wrobel J, Jozwikowski K, et al. Engineering the bandgap of unipolar of HgCdTe-based nBn infrared photodetectors[J]. Journal of Electronic Materials, 2015, 44(1): 158-166.
[12] [12] Martyniuk P, Gawron W, Rogalski A. Theoretical modeling of HOT HgCdTe barrier detectors for the mid-wave infrared range[J]. Journal of Electronic Materials, 2013, 42(11): 3309-3319.
[13] [13] N Akhavan D, Umana-Membreno G A, Jolley G, et al. A method of removing the valence band offset discontinuity in HgCdTe-based nBn detectors[J]. Applied Physics Letters, 2014, 121110(105): 1-4.
[14] [14] Akhavan N D, Umana-Membreno G A, Renjie Gu, et al. Superlattice barrier HgCdTe nBn infrared photodetectors: validation of the effective mass approximation[J]. IEEE Transactions on Electron Devices, 2016, 63(12): 1-8.
[15] [15] Rogalski A, Kopytko M, Jó?wikowski K, et al. Influence of radiative recombination on performance of p-i-n HOT long wavelength infrared HgCdTe photodiodes[C]//SPIE, 2018, 10624: 106240Y-1.
[16] [16] Rogalski A, Kopytko M, Martyniuk P. Performance prediction of p-i-n HgCdTe long-wavelength infrared HOT photodiodes[J]. Applied Optics, 2018, 57(18): D11-D19.
[17] [17] Kinch M A. State-of-the-Art Infrared Detector Technology[M]. Bellingham: SPIE, 2014.
[18] [18] Lee D, Dreiske P, Ellsworth J, et al. Law 19: The ultimate photodiode performance metric[C]//SPIE, 2020, 11407: 114070X-1.
[19] [19] Tennant W E, Lee D, Zandian M, et al. MBE HgCdTe technology: a very general solution to IR detection, described by ‘‘Rule 07’’, a very convenient heuristic[J]. Journal of Electronic Materials, 2008, 37(9): 1406-1410.
[20] [20] Tennant W E. “Rule 07’’ Revisited: still a good heuristic predictor of p/n HgCdTe photodiode performance?[J]. Journal of Electronic Materials, 2010, 39(7): 1030-1035.
[21] [21] Elliott C T, Gordon N T, White A M. Towards background-limited, room-temperature, infrared photon detectors in the 3-13 mm wavelength range[J]. Applied Physics Letters, 1999, 74(19): 2881-2883.
[22] [22] Piotr Martyniuk, Antoni Rogalski. Performance comparison of barrier detectors and HgCdTe photodiodes[J]. Optical Engineering, 2014, 53(10): 106105.
[23] [23] Kopytko M, Rogalski A. New insights into the ultimate performance of HgCdTe photodiodes[J]. Sensors and Actuators: A. Physical, 2022, 339: 113511.
[24] [24] Kopytko M, Rogalski A. Performance evaluation of type-ii superlattice devices relative to HgCdTe photodiodes[J]. IEEE Transactions on Electron Devices, 2022, 69(6): 2992-3002.
Get Citation
Copy Citation Text
QIN Gang, KONG Jincheng, REN Yang, CHEN Weiye, YANG Jin, QIN Qiang, ZHAO Jun. Optimized Design of nBn LWIR HgCdTe Devices[J]. Infrared Technology, 2024, 46(7): 815