High Power Laser and Particle Beams, Volume. 35, Issue 9, 091001(2023)

Progress of research on irradiation effects in key materials in ICF facilities

Qingyi Feng1, Xiaotao Zu1、*, Chunming Liu1, Bo Li1, Lijie Sun1, Yuling Wu1, Xia Xiang1, Xiaodong Yuan2, Hongxiang Deng1, Li Li1, Jingxia Yu1, Shizhen Xu1, and Wanguo Zheng2、*
Author Affiliations
  • 1School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China
  • 2Laser Fusion Research Center, CAEP, Mianyang 621900, China
  • show less
    References(181)

    [1] [1] Marshall C D, Speth J A, DeLoach L D, et al. Perating radiation impact on NIF final optic components[C]Proceedings of SPIE 3047, Solid State Lasers f Application to Inertial Confinement Fusion: Second Annual International Conference. 1997: 343363.

    [2] [2] Schirmann D, Bianchi L, Courchinoux R, et al. LMJ target area design engineering physics inside the LMJ target chamber[C]Proceedings of SPIE 3492, Third International Conference on Solid State Lasers f Application to Inertial Confinement Fusion. 1999: 710717.

    [4] [4] Abdou M, Besenbruch G, Duke J, et al. Chamber target technology development f inertial fusion energy[R]. Liverme: Lawrence Liverme National Labaty, 1999.

    [5] Kaufmann M, Neu R. Tungsten as first wall material in fusion devices[J]. Fusion Engineering and Design, 82, 521-527(2007).

    [8] [8] Kaufman M I, Celeste J R, Frogget B C, et al. Optomechanical considerations f the VISAR diagnostic at the National Ignition Facility (NIF)[C]Proceedings of SPIE 6289, Novel Optical Systems Design Optimization IX. 2006: 628906.

    [9] [9] Zheng Wanguo, Zu Xiaotao, Yuan Xiaodong, et al. Damage resistance physical problems of high power laser facilities[M]. Beijing: Science Press, 2014

    [10] [10] Wegner P J, Auerbach J M, Biesiada Jr T A, et al. NIF final optics system: frequency conversion beam conditioning[C]Proceedings of SPIE 5341, Optical Engineering at the Lawrence Liverme National Labaty II: The National Ignition Facility. 2004: 180189.

    [11] [11] Campbell J H, HawleyFedder R A, Stolz C J, et al. NIF optical materials fabrication technologies: an overview[C]Proceedings of SPIE 5341, Optical Engineering at the Lawrence Liverme National Labaty II: The National Ignition Facility. 2004: 84101.

    [13] [13] Burnham A, Peterson P F, Scott J M. Final rept f NIF chamber dynamics studies[R]. Liverme: Lawrence Liverme National Labaty, 1998.

    [15] [15] Dubern C, Bruneel J L, Chadeyron P, et al. Laser damage study on the firstwall LMJ target chamber[C]Proceedings of SPIE 3578, LaserInduced Damage in Optical Materials: 1998. 1999: 753764.

    [18] [18] Latkowski A K B J F, Peterson P F, Scott J M, et al. Development of the NIF target chamber first wall beam dumps[J]. Inertial Confinement, 1999.

    [20] [20] Whitman P K, Burnham A K, Nton M A, et al. Management of unconverted light f the National Ignition Facility target chamber[C]Proceedings of SPIE 3492, Third International Conference on Solid State Lasers f Application to Inertial Confinement Fusion. 1999: 718729.

    [22] [22] Burnham A K, Gerassimenko M, Scott J M, et al. Constraints on target chamber first wall target designs that will enable NIF debris shields to survive[C]Proceedings of SPIE 3492. 1999: 730739.

    [23] [23] Cantwell B, Celeste J. National Ignition Facility pollution prevention waste minimization plan[R]. Liverme: Lawrence Liverme National Labaty, 1998.

    [25] [25] Guillet F, Bertussi B, Lamaignere L, et al. Preliminary results on mitigation of KDP surface damage using the ball dimpling method[C]Proceedings of SPIE 6720, LaserInduced Damage in Optical Materials: 2007. 2007: 8997.

    [29] [29] Wood R M. Laserinduced damage of optical materials[M]. Boca Raton: CRC Press, 2003.

    [34] [34] Sparks M S, Duthler C J. Theetical studies of highpower ultraviolet infrared materials[R]. Van Nuys: Xonics, Inc. , 1974.

    [36] [36] Koldunov M F, Manenkov A A, Pocotilo I L. Multishot laser damage in transparent solids: they of accumulation effect[C]Proceedings of SPIE 2428, LaserInduced Damage in Optical Materials: 1994. 1995: 653667.

    [40] Rethfeld B. Free-electron generation in laser-irradiated dielectrics[J]. Contributions to Plasma Physics, 47, 360-367(2007).

    [41] Keldysh L V. Ionization in the field of a strong electromagnetic wave[J]. Soviet Physics JETP, 20, 1307-1314(1965).

    [44] Koldunov M, Manenkov A A. Theory of laser-induced inclusion-initiated damage in optical materials[J]. Optical Engineering, 51, 121811(2012).

    [45] Chen Mingjun, Pang Qilong, Liu Xinyan. Finite element analysis on influence of micro-nano machined surface impurity on optical performance of crystal[J]. High Power Laser and Particle Beams, 20, 1182-1186(2008).

    [47] Vladimirov P, Bouffard S. Displacement damage and transmutations in metals under neutron and proton irradiation[J]. Comptes Rendus Physique, 9, 303-322(2008).

    [49] Bravo D, Lagomacini J C, León M, et al. Comparison of neutron and gamma irradiation effects on KU1 fused silica monitored by electron paramagnetic resonance[J]. Fusion Engineering and Design, 84, 514-517(2009).

    [50] [50] Levchenko A N. Thermal annealing free radicals in γirradiated KDP DKDP crystals[C]Proceedings of the 8th International Conference on Advanced Optoelectronics Lasers. 2019: 448451.

    [51] León M, Martín P, Vila R, et al. Neutron irradiation effects on optical absorption of KU1 and KS-4V quartz glasses and Infrasil 301[J]. Fusion Engineering and Design, 84, 1174-1178(2009).

    [52] [52] Marshall C D, Speth J A, DeLoach L D, et al. Neutron gammairradiated optical property changes f the final optics of the National Ignition Facility[C]Proceedings of SPIE 2633, Solid State Lasers f Application to Inertial Confinement Fusion (ICF). 1995: 535540.

    [61] Nakatsuka M, Fujioka K, Kanabe T, et al. Rapid growth over 50 mm/day of water-soluble KDP crystal[J]. Journal of Crystal Growth, 171, 531-537(1997).

    [65] Demos S G, Negres R A, Raman R N, et al. Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica[J]. Laser & Photonics Reviews, 7, 444-452(2013).

    [68] [68] Salo V I, Kolybayeva M I, Puzikov V M, et al. Effect of impurities on the value of the bulk laser damage threshold of KDP single crystals[C]Proceedings of SPIE 3359, Optical Diagnostics of Materials Devices f Opto, Micro, Quantum Electronics 1997. 1998: 549552.

    [71] Jiang Xuanyu, Wei Liening, Li Yang, et al. Theoretical analysis of electronic structure and optical properties of potassium dihydrogen phosphate crystal affected by [011] screw dislocation[J]. Crystal Growth & Design, 22, 1764-1769(2022).

    [73] [73] Runkel M J, Woods B W, Yan Ming, et al. Analysis of highresolution scatter images from laser damage experiments perfmed on KDP[C]Proceedings of SPIE 2714, 27th Annual Boulder Damage Symposium: LaserInduced Damage in Optical Materials: 1995. 1996: 185195.

    [82] [82] Natoli J Y, Capoulade J, Piombini H, et al. Influence of laser beam size wavelength in the determination of LIDT associated laser damage precurs densities in KH2PO4[C]Proceedings of SPIE 6720, LaserInduced Damage in Optical Materials: 2007. 2007: 672016.

    [83] [83] Runkel M J, Jennings R T, DeYeo J J, et al. Overview of recent KDP damage experiments implications f NIF tripler perfmance[C]Proceedings of SPIE 3492, Third International Conference on Solid State Lasers f Application to Inertial Confinement Fusion. 1999: 374385.

    [87] Levchenko A N. Methods of optical absorption reduction in irradiated KDP single crystals containing arsenic ions[J]. Functional Materials, 16, 145-149(2009).

    [89] [89] Moses E I. National ignition facility: 1.8MJ 750TW ultraviolet laser[C]Proceedings of SPIE 5341, Optical Engineering at the Lawrence Liverme National Labaty II: The National Ignition Facility. 2004: 1324.

    [90] [90] Moses E I, Campbell J H, Stolz C J, et al. The National Ignition Facility: the wld’s largest optics laser system[C]Proceedings of SPIE 5001, Optical Engineering at the Lawrence Liverme National Labaty. 2003: 115.

    [91] [91] Peng Hansheng, Zhang Xiaomin, Wei X F, et al. Design of 60kJ SGIII laser facility related technology development[C]Proceedings of SPIE 4424, ECLIM 2000: 26th European Conference on Laser Interaction with Matter. 2001: 98103.

    [93] [93] re M L. Status of the LMJ project[C]Proceedings of SPIE 3047, Solid State Lasers f Application to Inertial Confinement Fusion: Second Annual International Conference. 1997: 3842.

    [96] [96] Gao Xun, Li Qi, Chi Haijun, et al. 355nm 1064nm laser damage of quartz glass[C]Proceedings of SPIE 9543, Third International Symposium on Laser Interaction with Matter. 2015: 95430K.

    [99] Li Yaguo, Yuan Zhigang, Wang Jian, et al. Laser-induced damage characteristics in fused silica surface due to mechanical and chemical defects during manufacturing processes[J]. Optics & Laser Technology, 91, 149-158(2017).

    [107] [107] Kozlowski M R, Carr J, Hutcheon I D, et al. Depth profiling of polishinginduced contamination on fused silica surfaces[C]Proceedings of SPIE 3244, LaserInduced Damage in Optical Materials: 1997. 1998: 365375.

    [111] [111] Camp D W, Kozlowski M R, Sheehan L M, et al. Subsurface damage polishing compound affect the 355nm laser damage threshold of fused silica surfaces[C]Proceedings of SPIE 3244, LaserInduced Damage in Optical Materials: 1997. 1998: 356364.

    [112] [112] Feit M D, Rubenchik A M. Influence of subsurface cracks on laserinduced surface damage[C]Proceedings of SPIE 5273, LaserInduced Damage in Optical Materials: 2003. 2004: 264272.

    [116] [116] Feit M D, Rubenchik A M, Faux D R, et al. Modeling of laser damage initiated by surface contamination[C]Proceedings of SPIE 2966, LaserInduced Damage in Optical Materials: 1996. 1997: 417424.

    [117] [117] Bude J, Miller P E, Shen Nan, et al. Silica laser damage mechanisms, precurss their mitigation[C]Proceedings of SPIE 9237, LaserInduced Damage in Optical Materials: 2014. 2014: 92370S.

    [131] Skuja L. Section 1. Defect studies in vitreous silica and related materials: optically active oxygen-deficiency-related centers in amorphous silicon dioxide[J]. Journal of Non-Crystalline Solids, 239, 16-48(1998).

    [133] [133] Zhou Xiaoyan, Zhou Xinda, Huang Jin, et al. Effect of pulse energy numbers on fused silica surface by ultraviolet laser pulses at 355nm in vacuum[C]Proceedings of SPIE 8786, Pacific Rim Laser Damage 2013: Optical Materials f High Power Lasers. 2013: 87860O.

    [134] Stapelbroek M, Griscom D L, Friebele E J, et al. Oxygen-associated trapped-hole centers in high-purity fused silicas[J]. Journal of Non-Crystalline Solids, 32, 313-326(1979).

    [150] [150] Massobrio C, Du Jincheng, Bernoni M, et al. Molecular dynamics simulations of disdered materials: from wk glasses to phasechange memy alloys[M]. Cham: Springer, 2015.

    [153] Lü Haibing, Xu Shizhen, Wang Haijun, et al. Evolution of oxygen deficiency center on fused silica surface irradiated by ultraviolet laser and posttreatment[J]. Advances in Condensed Matter Physics, 2014, 769059(2014).

    [154] Xu Shizhen, Zu Xiaotao, Jiang Xiaodong, et al. The damage mechanisms of fused silica irradiated by 355 nm laser in vacuum[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266, 2936-2940(2008).

    [161] Yang Fan, Shen Jun, Wu Guangming, . Laser damage of Sol-Gel thin film[J]. High Power Laser and Particle Beams, 15, 439-443(2003).

    [163] Zhao Yuanan, Gao Weidong, Shao Jianda, et al. Roles of absorbing defects and structural defects in multilayer under single-shot and multi-shot laser radiation[J]. Applied Surface Science, 227, 275-281(2004).

    [164] [164] Sun Chengwei. Laser irradiation effect[M]. Beijing: National Defense Industry Press, 2002

    [165] Jiang Xiaodong, Huang Zuxin, Ren Huan, . Study of laser conditioning process for optical films[J]. High Power Laser and Particle Beams, 14, 321-324(2002).

    [166] Guo Yuanjun, Zu Xiaotao, Jiang Xiaodong, et al. Laser-induced damage mechanism of the sol-gel single-layer SiO2 acid and base thin films[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266, 3190-3194(2008).

    [168] [168] Rivera A, Garoz D, Juarez R, et al. Lifetime of silica final lenses subject to HiPER irradiation conditions[C]Proceedings of SPIE 7916, High Power Lasers f Fusion Research. 2011: 79160S.

    [171] Izerrouken M, Kermadi S, Souami N, et al. Influence of reactor neutrons irradiation on electrical, optical and structural properties of SnO2 film prepared by sol-gel method[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 611, 14-17(2009).

    [177] van Dillen T, Brongersma M L, Snoeks E, et al. Activation energy spectra for annealing of ion irradiation induced defects in silica glasses[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 148, 221-226(1999).

    CLP Journals

    [1] Zhihong Sun, Bo Zhang, Junpu Zhao, Jun Dong, Fa Zeng, Ping Li. Focal spot measurement technology of multi-beam laser bunching[J]. High Power Laser and Particle Beams, 2024, 36(9): 092001

    Tools

    Get Citation

    Copy Citation Text

    Qingyi Feng, Xiaotao Zu, Chunming Liu, Bo Li, Lijie Sun, Yuling Wu, Xia Xiang, Xiaodong Yuan, Hongxiang Deng, Li Li, Jingxia Yu, Shizhen Xu, Wanguo Zheng. Progress of research on irradiation effects in key materials in ICF facilities[J]. High Power Laser and Particle Beams, 2023, 35(9): 091001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Damage of Optical Elements·Overview

    Received: Jan. 11, 2023

    Accepted: May. 27, 2023

    Published Online: Oct. 17, 2023

    The Author Email: Zu Xiaotao (xtzu@uestc.edu.cn), Zheng Wanguo (wgzheng_caep@sina.com)

    DOI:10.11884/HPLPB202335.230007

    Topics